Ran Qing, Shi Hang, Meng Huan, Zeng Shu-Pei, Wan Wu-Bin, Zhang Wei, Wen Zi, Lang Xing-You, Jiang Qing
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China.
Nat Commun. 2022 Jan 31;13(1):576. doi: 10.1038/s41467-022-28238-3.
Aqueous aluminum batteries are promising post-lithium battery technologies for large-scale energy storage applications because of the raw materials abundance, low costs, safety and high theoretical capacity. However, their development is hindered by the unsatisfactory electrochemical behaviour of the Al metal electrode due to the presence of an oxide layer and hydrogen side reaction. To circumvent these issues, we report aluminum-copper alloy lamellar heterostructures as anode active materials. These alloys improve the Al-ion electrochemical reversibility (e.g., achieving dendrite-free Al deposition during stripping/plating cycles) by using periodic galvanic couplings of alternating anodic α-aluminum and cathodic intermetallic AlCu nanometric lamellas. In symmetric cell configuration with a low oxygen concentration (i.e., 0.13 mg L) aqueous electrolyte solution, the lamella-nanostructured eutectic AlCu alloy electrode allows Al stripping/plating for 2000 h with an overpotential lower than ±53 mV. When the AlCu anode is tested in combination with an AlMnO cathode material, the aqueous full cell delivers specific energy of ~670 Wh kg at 100 mA g and an initial discharge capacity of ~400 mAh g at 500 mA g with a capacity retention of 83% after 400 cycles.
水系铝电池因其原材料丰富、成本低、安全性高和理论容量大,是大规模储能应用中很有前景的后锂电池技术。然而,由于存在氧化层和氢副反应,铝金属电极的电化学行为不尽人意,阻碍了其发展。为了解决这些问题,我们报道了铝铜合金层状异质结构作为负极活性材料。这些合金通过交替阳极α-铝和阴极金属间化合物AlCu纳米薄片的周期性电偶合,提高了铝离子的电化学可逆性(例如,在剥离/电镀循环中实现无枝晶铝沉积)。在低氧浓度(即0.13mg/L)的水系电解质溶液的对称电池配置中,层状纳米结构的共晶AlCu合金电极允许铝剥离/电镀2000小时,过电位低于±53mV。当AlCu负极与AlMnO正极材料组合测试时,水系全电池在100mA/g时提供约670Wh/kg的比能量,在500mA/g时的初始放电容量约为400mAh/g,400次循环后容量保持率为83%。