Suppr超能文献

吡啶基共价三嗪框架内原位生成电解质用于直接集成超级电容器

In Situ Generation of Electrolyte inside Pyridine-Based Covalent Triazine Frameworks for Direct Supercapacitor Integration.

作者信息

Troschke Erik, Leistenschneider Desirée, Rensch Tilo, Grätz Sven, Maschita Johannes, Ehrling Sebastian, Klemmed Benjamin, Lotsch Bettina V, Eychmüller Alexander, Borchardt Lars, Kaskel Stefan

机构信息

Department of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany.

Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, T6G 1H9, Edmonton, Alberta, Canada.

出版信息

ChemSusChem. 2020 Jun 19;13(12):3192-3198. doi: 10.1002/cssc.202000518. Epub 2020 May 11.

Abstract

The synthesis of porous electrode materials is often linked with the generation of waste that results from extensive purification steps and low mass yield. In contrast to porous carbons, covalent triazine frameworks (CTFs) display modular properties on a molecular basis through appropriate choice of the monomer. Herein, the synthesis of a new pyridine-based CTF material is showcased. The porosity and nitrogen-doping are tuned by a careful choice of the reaction temperature. An in-depth structural characterization by using Ar physisorption, X-ray photoelectron spectroscopy, and Raman spectroscopy was conducted to give a rational explanation of the material properties. Without any purification, the samples were applied as symmetrical supercapacitors and showed a specific capacitance of 141 F g . Residual ZnCl , which acted formerly as the porogen, was used directly as the electrolyte salt. Upon the addition of water, ZnCl was dissolved to form the aqueous electrolyte in situ. Thereby, extensive and time-consuming washing steps could be circumvented.

摘要

多孔电极材料的合成通常与大量纯化步骤和低质量产率所产生的废物相关联。与多孔碳不同,共价三嗪骨架(CTF)通过适当选择单体在分子基础上表现出模块化特性。在此展示了一种新型吡啶基CTF材料的合成。通过仔细选择反应温度来调节孔隙率和氮掺杂。利用氩气物理吸附、X射线光电子能谱和拉曼光谱进行了深入的结构表征,以合理解释材料性能。无需任何纯化,这些样品被用作对称超级电容器,表现出141 F g的比电容。先前用作致孔剂的残留ZnCl₂直接用作电解质盐。加水后,ZnCl₂溶解原位形成水性电解质。由此,可以避免广泛且耗时的洗涤步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f84/7317966/3baca885febb/CSSC-13-3192-g001.jpg

相似文献

1
In Situ Generation of Electrolyte inside Pyridine-Based Covalent Triazine Frameworks for Direct Supercapacitor Integration.
ChemSusChem. 2020 Jun 19;13(12):3192-3198. doi: 10.1002/cssc.202000518. Epub 2020 May 11.
2
Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors.
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45805-45817. doi: 10.1021/acsami.9b17847. Epub 2019 Nov 27.
3
Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1534-1542. doi: 10.1016/j.jcis.2021.08.087. Epub 2021 Aug 18.
5
Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework.
ChemSusChem. 2025 Feb 1;18(3):e202401716. doi: 10.1002/cssc.202401716. Epub 2024 Oct 29.
6
Revisiting Nitrogen Species in Covalent Triazine Frameworks.
Langmuir. 2017 Dec 19;33(50):14278-14285. doi: 10.1021/acs.langmuir.7b02929. Epub 2017 Dec 8.
7
Covalent Triazine Frameworks and Porous Carbons: Perspective from an Azulene-Based Case.
Macromol Rapid Commun. 2022 Oct;43(20):e2200392. doi: 10.1002/marc.202200392. Epub 2022 Jun 24.
8
Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl Eutectic Salt for the Hydrogen Evolution Reaction.
Angew Chem Int Ed Engl. 2022 Apr 25;61(18):e202201482. doi: 10.1002/anie.202201482. Epub 2022 Mar 9.
9
Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage.
Angew Chem Int Ed Engl. 2018 Jul 2;57(27):7992-7996. doi: 10.1002/anie.201711169. Epub 2017 Dec 4.
10
Crystalline Dual-Porous Covalent Triazine Frameworks as a New Platform for Efficient Electrocatalysis.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202317664. doi: 10.1002/anie.202317664. Epub 2024 Jan 8.

引用本文的文献

1
Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework.
ChemSusChem. 2025 Feb 1;18(3):e202401716. doi: 10.1002/cssc.202401716. Epub 2024 Oct 29.
2
Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg sensor.
Des Monomers Polym. 2024 Jun 18;27(1):35-50. doi: 10.1080/15685551.2024.2360746. eCollection 2024.
4
Organic Supercapacitors as the Next Generation Energy Storage Device: Emergence, Opportunity, and Challenges.
Chemphyschem. 2023 Feb 1;24(3):e202200567. doi: 10.1002/cphc.202200567. Epub 2022 Nov 3.
5
Scale-Up of Solvent-Free, Mechanochemical Precursor Synthesis for Nanoporous Carbon Materials via Extrusion.
ChemSusChem. 2022 Aug 19;15(16):e202200651. doi: 10.1002/cssc.202200651. Epub 2022 Jun 28.

本文引用的文献

1
Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors.
J Am Chem Soc. 2018 Sep 5;140(35):10941-10945. doi: 10.1021/jacs.8b06460. Epub 2018 Aug 27.
2
Revisiting Nitrogen Species in Covalent Triazine Frameworks.
Langmuir. 2017 Dec 19;33(50):14278-14285. doi: 10.1021/acs.langmuir.7b02929. Epub 2017 Dec 8.
3
E-Mobility and the Energy Transition.
Angew Chem Int Ed Engl. 2017 Sep 4;56(37):11019-11022. doi: 10.1002/anie.201701633. Epub 2017 Jul 26.
4
Mechanochemical Friedel-Crafts Alkylation-A Sustainable Pathway Towards Porous Organic Polymers.
Angew Chem Int Ed Engl. 2017 Jun 6;56(24):6859-6863. doi: 10.1002/anie.201702303. Epub 2017 May 10.
5
Solvent-Free Mechanochemical Synthesis of Nitrogen-Doped Nanoporous Carbon for Electrochemical Energy Storage.
ChemSusChem. 2017 Jun 9;10(11):2416-2424. doi: 10.1002/cssc.201700459. Epub 2017 May 22.
6
In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance.
J Am Chem Soc. 2016 Sep 14;138(36):11497-500. doi: 10.1021/jacs.6b07644. Epub 2016 Sep 2.
7
Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst.
ChemSusChem. 2015 Mar;8(5):809-12. doi: 10.1002/cssc.201403173. Epub 2015 Feb 11.
8
Electron-deficient heteroarenium salts: an organocatalytic tool for activation of hydrogen peroxide in oxidations.
J Org Chem. 2015 Mar 6;80(5):2676-99. doi: 10.1021/jo502865f. Epub 2015 Feb 20.
9
10
Carbons and electrolytes for advanced supercapacitors.
Adv Mater. 2014 Apr 9;26(14):2219-51, 2283. doi: 10.1002/adma.201304137. Epub 2014 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验