Maity Arijit, Siebels Marvin, Jana Anupam, Eswaran Muthusankar, Dhanusuraman Ragupathy, Janiak Christoph, Bhunia Asamanjoy
Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, 700 032, India.
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany.
ChemSusChem. 2025 Feb 1;18(3):e202401716. doi: 10.1002/cssc.202401716. Epub 2024 Oct 29.
The search for new electrode materials for bipolar-supercapacitor performance is the intention of numerous research in the area of functional framework materials. Among various electrode materials, covalent triazine-based frameworks (CTFs) are in the spotlight drawing much attention as potential electrode material for energy storage owing to their tunable surface area, pore size distribution, and heteroatom content. Herein, we present the synthesis of nitrogen-functionalized CTFs marked as CTF-Py-600 and CTF-Py-700 with high nitrogen content (18 % and 14 %, respectively) for supercapacitor application by applying the 2,6-dicyanopyridine monomer via the polymerization reaction under ionothermal condition. The BET surface areas of these materials are in the range of 940-1999 m g. CTF-Py-700 demonstrates outstanding electrochemical performance in both potential windows. At the negative potential window, it exhibits a higher specific capacitance of 435 F g (at 1 A g) compared to the positive potential window, where it shows a specific capacitance of 306 F g (at 1 A g) owing to the synergistic existence of its large surface area (1999 m g) and high nitrogen content (14 %) with inherent microporosity. Remarkable cycling stability without noticeable degradation of specific capacitance after 15000 cycles was recorded for CTF-Py-700. This suggests that the nitrogen-functionalized CTFs are going to be a highly demanded electrode material for electrochemical energy storage applications.
寻找用于双极超级电容器性能的新型电极材料是功能框架材料领域众多研究的目标。在各种电极材料中,基于共价三嗪的框架(CTF)因其可调节的表面积、孔径分布和杂原子含量,作为潜在的储能电极材料备受关注。在此,我们通过在离子热条件下应用2,6 - 二氰基吡啶单体进行聚合反应,合成了氮功能化的CTF,标记为CTF - Py - 600和CTF - Py - 700,用于超级电容器应用,其氮含量高(分别为18%和14%)。这些材料的BET表面积在940 - 1999 m²/g范围内。CTF - Py - 700在两个电位窗口都表现出出色的电化学性能。在负电位窗口,与正电位窗口相比,它表现出更高的比电容,在1 A/g时为435 F/g,而在正电位窗口,由于其大表面积(1999 m²/g)、高氮含量(14%)和固有微孔的协同存在,在1 A/g时比电容为306 F/g。CTF - Py - 700在15000次循环后记录到了显著的循环稳定性,比电容没有明显下降。这表明氮功能化的CTF将成为电化学储能应用中急需的电极材料。