Cervera Javier, Levin Michael, Mafe Salvador
Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain.
Dept. of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, United States.
J Phys Chem Lett. 2020 May 7;11(9):3234-3241. doi: 10.1021/acs.jpclett.0c00641. Epub 2020 Apr 10.
The spatiotemporal distributions of signaling ions and molecules that modulate biochemical pathways in nonexcitable cells are influenced by multicellular electric potentials. These potentials act as distributed controllers encoding instructive spatial patterns in development and regeneration. We review experimental facts and discuss recent bioelectrical models that provide new physical insights and complement biochemical approaches. Single-cell states are modulated at the multicellular level because of the coupling between neighboring cells, thus allowing memories and multicellular patterns. The model is based on (i) two generic voltage-gated ion channels that promote the polarized and depolarized cell states, (ii) a feedback mechanism for the transcriptional and bioelectrical regulations, and (iii) voltage-gated intercellular conductances that allow a dynamic intercellular connectivity. The simulations provide steady-state and oscillatory multicellular states that help explain aspects of development and guide experimental procedures attempting to establish instructive bioelectrical patterns based on electric potentials and currents to regulate cell behavior and morphogenesis.
调节非兴奋性细胞生化途径的信号离子和分子的时空分布受多细胞电势影响。这些电势充当分布式控制器,在发育和再生过程中编码指导性的空间模式。我们回顾了实验事实,并讨论了最近的生物电模型,这些模型提供了新的物理见解并补充了生化方法。由于相邻细胞之间的耦合,单细胞状态在多细胞水平上受到调节,从而产生记忆和多细胞模式。该模型基于:(i)两种促进细胞极化和去极化状态的通用电压门控离子通道;(ii)转录和生物电调节的反馈机制;(iii)允许动态细胞间连接的电压门控细胞间电导。模拟提供了稳态和振荡多细胞状态,有助于解释发育方面的问题,并指导试图基于电势和电流建立指导性生物电模式以调节细胞行为和形态发生的实验程序。