文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细胞系统生物电:不同的细胞间缝隙连接如何使多细胞聚集体区域化。

Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate.

作者信息

Riol Alejandro, Cervera Javier, Levin Michael, Mafe Salvador

机构信息

Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain.

Dept. of Biology, Allen Discovery Center at Tufts University, Medford, MA 02155-4243, USA.

出版信息

Cancers (Basel). 2021 Oct 22;13(21):5300. doi: 10.3390/cancers13215300.


DOI:10.3390/cancers13215300
PMID:34771463
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8582473/
Abstract

Electric potential distributions can act as instructive pre-patterns for development, regeneration, and tumorigenesis in cell systems. The biophysical states influence transcription, proliferation, cell shape, migration, and differentiation through biochemical and biomechanical downstream transduction processes. A major knowledge gap is the origin of spatial patterns in vivo, and their relationship to the ion channels and the electrical synapses known as gap junctions. Understanding this is critical for basic evolutionary developmental biology as well as for regenerative medicine. We computationally show that cells may express connexin proteins with different voltage-gated gap junction conductances as a way to maintain multicellular regions at distinct membrane potentials. We show that increasing the multicellular connectivity via enhanced junction function does not always contribute to the bioelectrical normalization of abnormally depolarized multicellular patches. From a purely electrical junction view, this result suggests that the reduction rather than the increase of specific connexin levels can also be a suitable bioelectrical approach in some cases and time stages. We offer a minimum model that incorporates effective conductances ultimately related to specific ion channel and junction proteins that are amenable to external regulation. We suggest that the bioelectrical patterns and their encoded instructive information can be externally modulated by acting on the mean fields of cell systems, a complementary approach to that of acting on the molecular characteristics of individual cells. We believe that despite the limitations of a biophysically focused model, our approach can offer useful qualitative insights into the collective dynamics of cell system bioelectricity.

摘要

电势分布可作为细胞系统中发育、再生和肿瘤发生的指导性预模式。生物物理状态通过生化和生物力学下游转导过程影响转录、增殖、细胞形态、迁移和分化。一个主要的知识空白是体内空间模式的起源,以及它们与离子通道和被称为缝隙连接的电突触的关系。理解这一点对于基础进化发育生物学以及再生医学至关重要。我们通过计算表明,细胞可能表达具有不同电压门控缝隙连接电导的连接蛋白,以此来维持多细胞区域处于不同的膜电位。我们表明,通过增强连接功能来增加多细胞连接性并不总是有助于异常去极化的多细胞斑块的生物电正常化。从纯粹的电连接角度来看,这一结果表明,在某些情况和时间阶段,降低而非增加特定连接蛋白水平也可能是一种合适的生物电方法。我们提供了一个最小模型,该模型纳入了最终与特定离子通道和连接蛋白相关的有效电导,这些电导易于受到外部调节。我们建议,可以通过作用于细胞系统的平均场来外部调节生物电模式及其编码的指导性信息,这是一种与作用于单个细胞分子特征互补的方法。我们相信,尽管以生物物理为重点的模型存在局限性,但我们的方法可以为细胞系统生物电的集体动力学提供有用的定性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/d925ad72e70b/cancers-13-05300-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/75d96a397d94/cancers-13-05300-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/f205654e5e31/cancers-13-05300-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/70b642858db9/cancers-13-05300-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/d150fea3e865/cancers-13-05300-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/7afc01b0e559/cancers-13-05300-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/45072d8b614c/cancers-13-05300-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/167b35cc28ef/cancers-13-05300-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/d925ad72e70b/cancers-13-05300-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/75d96a397d94/cancers-13-05300-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/f205654e5e31/cancers-13-05300-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/70b642858db9/cancers-13-05300-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/d150fea3e865/cancers-13-05300-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/7afc01b0e559/cancers-13-05300-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/45072d8b614c/cancers-13-05300-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/167b35cc28ef/cancers-13-05300-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f497/8582473/d925ad72e70b/cancers-13-05300-g008.jpg

相似文献

[1]
Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate.

Cancers (Basel). 2021-10-22

[2]
From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers.

Prog Biophys Mol Biol. 2019-6-27

[3]
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach.

Bioelectrochemistry. 2018-4-21

[4]
Correcting instructive electric potential patterns in multicellular systems: External actions and endogenous processes.

Biochim Biophys Acta Gen Subj. 2023-10

[5]
Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations.

Phys Rev E. 2020-11

[6]
Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics.

Sci Rep. 2016-2-4

[7]
MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity.

J Phys Chem B. 2017-8-2

[8]
Oscillatory phenomena in electrophysiological networks: The coupling between cell bioelectricity and transcription.

Comput Biol Med. 2024-9

[9]
Bioelectrical Coupling of Single-Cell States in Multicellular Systems.

J Phys Chem Lett. 2020-5-7

[10]
Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions.

Bioelectrochemistry. 2019-11-29

引用本文的文献

[1]
Associative conditioning in gene regulatory network models increases integrative causal emergence.

Commun Biol. 2025-7-9

[2]
Identification of Distinct, Quantitative Pattern Classes from Emergent Tissue-Scale hiPSC Bioelectric Properties.

Cells. 2024-7-2

[3]
Enhanced Methodologies for Investigating the Electrophysiological Characteristics of Endogenous Pannexin 1 Intercellular Cell-Cell Channels.

Methods Mol Biol. 2024

[4]
Principled Limitations on Self-Representation for Generic Physical Systems.

Entropy (Basel). 2024-2-24

[5]
Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain.

iScience. 2023-11-4

[6]
Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology.

Cell Mol Life Sci. 2023-5-8

[7]
Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments.

Entropy (Basel). 2022-6-12

[8]
Asymptotic burnout and homeostatic awakening: a possible solution to the Fermi paradox?

J R Soc Interface. 2022-5

[9]
Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code.

Int J Mol Sci. 2022-3-15

本文引用的文献

[1]
IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria.

Cell Syst. 2021-6-16

[2]
Synthetic living machines: A new window on life.

iScience. 2021-5-4

[3]
Bioelectric signaling as a unique regulator of development and regeneration.

Development. 2021-5-15

[4]
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer.

Cell. 2021-4-15

[5]
Bioelectrical domain walls in homogeneous tissues.

Nat Phys. 2020-3

[6]
Measuring Absolute Membrane Potential Across Space and Time.

Annu Rev Biophys. 2021-5-6

[7]
Optical Imaging of Electrical and Mechanical Couplings between Cells.

ACS Sens. 2021-2-26

[8]
Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations.

Phys Rev E. 2020-11

[9]
Connexins in Cancer: Jekyll or Hyde?

Biomolecules. 2020-12-10

[10]
Precise control of ion channel and gap junction expression is required for patterning of the regenerating axolotl limb.

Int J Dev Biol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索