Suppr超能文献

利用社交媒体搜索索引预测 2019 年新型冠状病毒(COVID-19)病例数。

Prediction of Number of Cases of 2019 Novel Coronavirus (COVID-19) Using Social Media Search Index.

机构信息

School of Statistics, University of International Business and Economics, Beijing 100029, China.

Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City 242, Taiwan.

出版信息

Int J Environ Res Public Health. 2020 Mar 31;17(7):2365. doi: 10.3390/ijerph17072365.

Abstract

Predicting the number of new suspected or confirmed cases of novel coronavirus disease 2019 (COVID-19) is crucial in the prevention and control of the COVID-19 outbreak. Social media search indexes (SMSI) for dry cough, fever, chest distress, coronavirus, and pneumonia were collected from 31 December 2019 to 9 February 2020. The new suspected cases of COVID-19 data were collected from 20 January 2020 to 9 February 2020. We used the lagged series of SMSI to predict new suspected COVID-19 case numbers during this period. To avoid overfitting, five methods, namely subset selection, forward selection, lasso regression, ridge regression, and elastic net, were used to estimate coefficients. We selected the optimal method to predict new suspected COVID-19 case numbers from 20 January 2020 to 9 February 2020. We further validated the optimal method for new confirmed cases of COVID-19 from 31 December 2019 to 17 February 2020. The new suspected COVID-19 case numbers correlated significantly with the lagged series of SMSI. SMSI could be detected 6-9 days earlier than new suspected cases of COVID-19. The optimal method was the subset selection method, which had the lowest estimation error and a moderate number of predictors. The subset selection method also significantly correlated with the new confirmed COVID-19 cases after validation. SMSI findings on lag day 10 were significantly correlated with new confirmed COVID-19 cases. SMSI could be a significant predictor of the number of COVID-19 infections. SMSI could be an effective early predictor, which would enable governments' health departments to locate potential and high-risk outbreak areas.

摘要

预测 2019 年新型冠状病毒病(COVID-19)的新疑似或确诊病例数对于 COVID-19 疫情的防控至关重要。从 2019 年 12 月 31 日至 2020 年 2 月 9 日,我们收集了干咳、发热、胸闷、冠状病毒和肺炎的社交媒体搜索索引(SMSI)。从 2020 年 1 月 20 日至 2020 年 2 月 9 日,我们收集了新的 COVID-19 疑似病例数据。我们使用 SMSI 的滞后序列来预测这一时期新的 COVID-19 疑似病例数。为了避免过拟合,我们使用了五种方法,即子集选择、前向选择、套索回归、岭回归和弹性网络来估计系数。我们选择了从 2020 年 1 月 20 日至 2 月 9 日预测新的 COVID-19 疑似病例数的最佳方法。我们进一步验证了 2019 年 12 月 31 日至 2020 年 2 月 17 日期间 COVID-19 确诊新病例的最佳方法。新的 COVID-19 疑似病例数与 SMSI 的滞后序列显著相关。SMSI 可以比新的 COVID-19 疑似病例提前 6-9 天检测到。最佳方法是子集选择方法,该方法具有最低的估计误差和适中数量的预测因子。验证后,子集选择方法与新确诊的 COVID-19 病例也显著相关。滞后第 10 天的 SMSI 结果与新确诊的 COVID-19 病例显著相关。SMSI 可能是 COVID-19 感染人数的重要预测指标。SMSI 可能是一种有效的早期预测指标,使政府卫生部门能够定位潜在的和高风险的爆发地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a2e/7177617/0cb4cb6e6adc/ijerph-17-02365-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验