Suppr超能文献

水溶性壳聚糖与石墨烯量子点纳米复合材料的生物忆阻行为

Biomemristic Behavior for Water-Soluble Chitosan Blended with Graphene Quantum Dot Nanocomposite.

作者信息

Li Lei

机构信息

HLJ Province Key Laboratories of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China.

Research Center for Fiber Optic Sensing Technology National Local Joint Engineering, Heilongjiang University, Harbin 150080, China.

出版信息

Nanomaterials (Basel). 2020 Mar 20;10(3):559. doi: 10.3390/nano10030559.

Abstract

Bionanocomposite has promising biomemristic behaviors for data storage inspired by a natural biomaterial matrix. Carboxylated chitosan (CCS), a water-soluble derivative of chitosan avoiding the acidic salt removal, has better biodegradability and bioactivity, and is able to absorb graphene quantum dots (GQDs) employed as charge-trapping centers. In this investigation, biomemristic devices based on water-soluble CCS:GQDs nanocomposites were successfully achieved with the aid of the spin-casting method. The promotion of binary biomemristic behaviors for Ni/CCS:GQDs/indium-tin-oxide (ITO) was evaluated for distinct weight ratios of the chemical components. Fourier transform infrared spectroscopy, Raman spectroscopy (temperature dependence), thermogravimetric analyses and scanning electron microscopy were performed to assess the nature of the CCS:GQDs nanocomposites. The fitting curves on the experimental data further confirmed that the conduction mechanism might be attributed to charge trapping-detrapping in the CCS:GQDs nanocomposite film. Advances in water-soluble CCS-based electronic devices would open new avenues in the biocompatibility and integration of high-performance biointegrated electronics.

摘要

受天然生物材料基质启发,生物纳米复合材料在数据存储方面具有很有前景的生物忆阻行为。羧化壳聚糖(CCS)是壳聚糖的一种水溶性衍生物,避免了酸性盐的去除,具有更好的生物降解性和生物活性,并且能够吸收用作电荷俘获中心的石墨烯量子点(GQDs)。在本研究中,借助旋涂法成功制备了基于水溶性CCS:GQDs纳米复合材料的生物忆阻器件。针对不同重量比的化学成分,评估了Ni/CCS:GQDs/氧化铟锡(ITO)二元生物忆阻行为的促进作用。进行了傅里叶变换红外光谱、拉曼光谱(温度依赖性)、热重分析和扫描电子显微镜分析,以评估CCS:GQDs纳米复合材料的性质。实验数据上的拟合曲线进一步证实,传导机制可能归因于CCS:GQDs纳米复合薄膜中的电荷俘获 - 脱俘获。基于水溶性CCS的电子器件的进展将为高性能生物集成电子学的生物相容性和集成开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7153374/4416dc15630a/nanomaterials-10-00559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验