Suppr超能文献

基于三层结构石墨烯的存储器件的三元忆阻效应

Ternary Memristic Effect of Trilayer-Structured Graphene-Based Memory Devices.

作者信息

Li Lei

机构信息

Key Laboratories of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China.

Research Center for Fiber Optic Sensing Technology National Local Joint Engineering, Heilongjiang University, Harbin 150080, China.

出版信息

Nanomaterials (Basel). 2019 Apr 2;9(4):518. doi: 10.3390/nano9040518.

Abstract

A tristable memory device with a trilayer structure utilizes poly(methyl methacrylate) (PMMA) sandwiched between double-stacked novel nanocomposite films that consist of 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) doped with graphene oxide (GO). We successfully fabricated devices consisting of single and double GO@PBD nanocomposite films embedded in polymer layers. These devices had binary and ternary nonvolatile resistive switching behaviors, respectively. Binary memristic behaviors were observed for the device with a single GO@PBD nanocomposite film, while ternary behaviors were observed for the device with the double GO@PBD nanocomposite films. The heterostructure GO@PBD/PMMA/GO@PBD demonstrated ternary charge transport on the basis of - fitting curves and energy-band diagrams. Tristable memory properties could be enhanced by this novel trilayer structure. These results show that the novel graphene-based memory devices with trilayer structure can be applied to memristic devices. Charge trap materials with this innovative architecture for memristic devices offer a novel design scheme for multi-bit data storage.

摘要

一种具有三层结构的三稳态存储器件利用夹在由掺杂有氧化石墨烯(GO)的2-(4-叔丁基苯基)-5-(4-联苯基)-1,3,4-恶二唑(PBD)组成的双堆叠新型纳米复合膜之间的聚甲基丙烯酸甲酯(PMMA)。我们成功制备了由嵌入聚合物层中的单层和双层GO@PBD纳米复合膜组成的器件。这些器件分别具有二元和三元非易失性电阻开关行为。对于具有单层GO@PBD纳米复合膜的器件观察到二元忆阻行为,而对于具有双层GO@PBD纳米复合膜的器件观察到三元行为。异质结构GO@PBD/PMMA/GO@PBD基于拟合曲线和能带图展示了三元电荷传输。这种新型三层结构可以增强三稳态存储特性。这些结果表明,具有三层结构的新型基于石墨烯的存储器件可应用于忆阻器件。具有这种创新架构的用于忆阻器件的电荷俘获材料为多位数据存储提供了一种新颖的设计方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验