Suppr超能文献

利用地面和遥感传感器与气温预报相结合来预测作物蒸散量。

Predicting Crop Evapotranspiration by Integrating Ground and Remote Sensors with Air Temperature Forecasts.

机构信息

Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.

Interdepartmental Research Centre on the "Earth Critical Zone" (CRISP) of the University of Naples Federico II, 80055 Portici, Italy.

出版信息

Sensors (Basel). 2020 Mar 20;20(6):1740. doi: 10.3390/s20061740.

Abstract

Water use efficiency in agriculture can be improved by implementing advisory systems that support on-farm irrigation scheduling, with reliable forecasts of the actual crop water requirements, where crop evapotranspiration (ET) is the main component. The development of such advisory systems is highly dependent upon the availability of timely updated crop canopy parameters and weather forecasts several days in advance, at low operational costs. This study presents a methodology for forecasting ET, based on crop parameters retrieved from multispectral images, data from ground weather sensors, and air temperature forecasts. Crop multispectral images are freely provided by recent satellite missions, with high spatial and temporal resolutions. Meteorological services broadcast air temperature forecasts with lead times of several days, at no subscription costs, and with high accuracy. The performance of the proposed methodology was applied at 18 sites of the Campania region in Italy, by exploiting the data of intensive field campaigns in the years 2014-2015. ET measurements were forecast with a median bias of 0.2 mm, and a median root mean square error (RMSE) of 0.75 mm at the first day of forecast. At the 5 day of accumulated forecast, the median bias and RMSE become 1 mm and 2.75 mm, respectively. The forecast performances were proved to be as accurate and as precise as those provided with a complete set of forecasted weather variables.

摘要

农业用水效率可以通过实施咨询系统来提高,该系统支持农场灌溉计划,能够可靠地预测实际作物需水量,其中作物蒸散量 (ET) 是主要组成部分。这种咨询系统的开发高度依赖于及时更新的作物冠层参数和数天前的天气预报,同时运营成本要低。本研究提出了一种基于从多光谱图像中获取的作物参数、地面天气传感器数据和气温预测来预测 ET 的方法。多光谱作物图像由最近的卫星任务免费提供,具有高空间和时间分辨率。气象服务以零订阅成本提供数天提前量的气温预测,具有高精度。该方法的性能在意大利坎帕尼亚地区的 18 个地点进行了应用,利用了 2014-2015 年密集实地考察的数据。ET 测量值的预测具有 0.2 毫米的中值偏差,在预测的第一天的中值均方根误差 (RMSE) 为 0.75 毫米。在累计预测的第 5 天,中值偏差和 RMSE 分别变为 1 毫米和 2.75 毫米。预测性能被证明与提供完整的预测气象变量一样准确和精确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5d4/7146411/594aa95427ce/sensors-20-01740-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验