Aalto University School of Science, 00076, Aalto, Finland.
Medical Imaging Centre, Department of Radiology Tampere University Hospital, Teiskontie 35, 33520, Tampere, Finland.
Sci Rep. 2020 Apr 3;10(1):5842. doi: 10.1038/s41598-020-62321-3.
Accurate localisation of mandibular canals in lower jaws is important in dental implantology, in which the implant position and dimensions are currently determined manually from 3D CT images by medical experts to avoid damaging the mandibular nerve inside the canal. Here we present a deep learning system for automatic localisation of the mandibular canals by applying a fully convolutional neural network segmentation on clinically diverse dataset of 637 cone beam CT volumes, with mandibular canals being coarsely annotated by radiologists, and using a dataset of 15 volumes with accurate voxel-level mandibular canal annotations for model evaluation. We show that our deep learning model, trained on the coarsely annotated volumes, localises mandibular canals of the voxel-level annotated set, highly accurately with the mean curve distance and average symmetric surface distance being 0.56 mm and 0.45 mm, respectively. These unparalleled accurate results highlight that deep learning integrated into dental implantology workflow could significantly reduce manual labour in mandibular canal annotations.
在下颌骨中准确定位下颌管对于牙种植学非常重要,目前,医疗专家通过 3D CT 图像手动确定种植体的位置和尺寸,以避免损伤管内的下颌神经。在这里,我们提出了一种深度学习系统,通过对临床不同的 637 个锥形束 CT 容积数据集应用全卷积神经网络分割,对下颌管进行自动定位,其中下颌管由放射科医生进行粗略注释,并使用具有准确体素级下颌管注释的 15 个容积数据集进行模型评估。我们表明,我们的深度学习模型在经过粗略注释的容积数据集上进行训练,可以非常准确地定位体素级注释集的下颌管,平均曲线距离和平均对称表面距离分别为 0.56 毫米和 0.45 毫米。这些无与伦比的准确结果突出表明,将深度学习集成到牙种植学工作流程中,可以显著减少下颌管注释的人工劳动。