Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.
Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada.
Sci Rep. 2020 Apr 3;10(1):5937. doi: 10.1038/s41598-020-62713-5.
Given the subjective nature of conventional diagnostic methods for post-traumatic stress disorder (PTSD), an objectively measurable biomarker is highly desirable; especially to clinicians and researchers. Macroscopic neural circuits measured using magnetoencephalography (MEG) has previously been shown to be indicative of the PTSD phenotype and severity. In the present study, we employed a machine learning-based classification framework using MEG neural synchrony to distinguish combat-related PTSD from trauma-exposed controls. Support vector machine (SVM) was used as the core classification algorithm. A recursive random forest feature selection step was directly incorporated in the nested SVM cross validation process (CV-SVM-rRF-FS) for identifying the most important features for PTSD classification. For the five frequency bands tested, the CV-SVM-rRF-FS analysis selected the minimum numbers of edges per frequency that could serve as a PTSD signature and be used as the basis for SVM modelling. Many of the selected edges have been reported previously to be core in PTSD pathophysiology, with frequency-specific patterns also observed. Furthermore, the independent partial least squares discriminant analysis suggested low bias in the machine learning process. The final SVM models built with selected features showed excellent PTSD classification performance (area-under-curve value up to 0.9). Testament to its robustness when distinguishing individuals from a heavily traumatised control group, these developments for a classification model for PTSD also provide a comprehensive machine learning-based computational framework for classifying other mental health challenges using MEG connectome profiles.
鉴于创伤后应激障碍(PTSD)的传统诊断方法具有主观性,因此非常需要一种客观可衡量的生物标志物;尤其是对于临床医生和研究人员而言。先前已经表明,使用脑磁图(MEG)测量的宏观神经回路可作为 PTSD 表型和严重程度的指标。在本研究中,我们使用基于机器学习的分类框架,使用 MEG 神经同步性来区分与战斗相关的 PTSD 和创伤后暴露对照。支持向量机(SVM)被用作核心分类算法。递归随机森林特征选择步骤直接包含在嵌套 SVM 交叉验证过程(CV-SVM-rRF-FS)中,用于识别 PTSD 分类的最重要特征。在测试的五个频带中,CV-SVM-rRF-FS 分析选择了可作为 PTSD 特征并用作 SVM 建模基础的每个频率的最小边缘数。许多选定的边缘先前已被报道为 PTSD 病理生理学的核心,并且还观察到了特定频率的模式。此外,独立偏最小二乘判别分析表明机器学习过程中的偏差较低。使用选定特征构建的最终 SVM 模型表现出出色的 PTSD 分类性能(曲线下面积值高达 0.9)。这些进展为 PTSD 的分类模型提供了一个全面的基于机器学习的计算框架,用于使用 MEG 连接组图谱对其他心理健康挑战进行分类,证明了其在区分来自重度创伤对照组的个体时的稳健性。