Suppr超能文献

人工智能在人类脑连接组研究进展中的作用。

Artificial intelligence role in advancement of human brain connectome studies.

作者信息

Shekouh Dorsa, Sadat Kaboli Helia, Ghaffarzadeh-Esfahani Mohammadreza, Khayamdar Mohammadmahdi, Hamedani Zeinab, Oraee-Yazdani Saeed, Zali Alireza, Amanzadeh Elnaz

机构信息

Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.

出版信息

Front Neuroinform. 2024 Sep 20;18:1399931. doi: 10.3389/fninf.2024.1399931. eCollection 2024.

Abstract

Neurons are interactive cells that connect via ions to develop electromagnetic fields in the brain. This structure functions directly in the brain. Connectome is the data obtained from neuronal connections. Since neural circuits change in the brain in various diseases, studying connectome sheds light on the clinical changes in special diseases. The ability to explore this data and its relation to the disorders leads us to find new therapeutic methods. Artificial intelligence (AI) is a collection of powerful algorithms used for finding the relationship between input data and the outcome. AI is used for extraction of valuable features from connectome data and in turn uses them for development of prognostic and diagnostic models in neurological diseases. Studying the changes of brain circuits in neurodegenerative diseases and behavioral disorders makes it possible to provide early diagnosis and development of efficient treatment strategies. Considering the difficulties in studying brain diseases, the use of connectome data is one of the beneficial methods for improvement of knowledge of this organ. In the present study, we provide a systematic review on the studies published using connectome data and AI for studying various diseases and we focus on the strength and weaknesses of studies aiming to provide a viewpoint for the future studies. Throughout, AI is very useful for development of diagnostic and prognostic tools using neuroimaging data, while bias in data collection and decay in addition to using small datasets restricts applications of AI-based tools using connectome data which should be covered in the future studies.

摘要

神经元是通过离子相互连接以在大脑中产生电磁场的交互式细胞。这种结构在大脑中直接发挥作用。连接组是从神经元连接中获得的数据。由于神经回路在各种疾病中会在大脑中发生变化,研究连接组有助于了解特殊疾病的临床变化。探索这些数据及其与疾病的关系的能力使我们能够找到新的治疗方法。人工智能(AI)是一组用于寻找输入数据与结果之间关系的强大算法。AI用于从连接组数据中提取有价值的特征,进而将其用于开发神经疾病的预后和诊断模型。研究神经退行性疾病和行为障碍中脑回路的变化有助于实现早期诊断并制定有效的治疗策略。鉴于研究脑部疾病存在困难,使用连接组数据是增进对该器官了解的有益方法之一。在本研究中,我们对使用连接组数据和AI来研究各种疾病的已发表研究进行了系统综述,并且我们关注旨在为未来研究提供观点的研究的优势和劣势。总体而言,AI对于使用神经影像数据开发诊断和预后工具非常有用,而数据收集过程中的偏差、数据衰减以及使用小数据集等因素限制了基于连接组数据的AI工具的应用,这些问题应在未来研究中加以解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e7/11450642/44167e18efbd/fninf-18-1399931-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验