Suppr超能文献

基于卡尔曼滤波的微泡跟踪用于稳健的超声微血管超分辨率成像。

Kalman Filter-Based Microbubble Tracking for Robust Super-Resolution Ultrasound Microvessel Imaging.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Sep;67(9):1738-1751. doi: 10.1109/TUFFC.2020.2984384. Epub 2020 Mar 31.

Abstract

Contrast microbubble (MB)-based super-resolution ultrasound microvessel imaging (SR-UMI) overcomes the compromise in conventional ultrasound imaging between spatial resolution and penetration depth and has been successfully applied to a wide range of clinical applications. However, clinical translation of SR-UMI remains challenging due to the limited number of MBs detected within a given accumulation time. Here, we propose a Kalman filter-based method for robust MB tracking and improved blood flow speed measurement with reduced numbers of MBs. An acceleration constraint and a direction constraint for MB movement were developed to control the quality of the estimated MB trajectory. An adaptive interpolation approach was developed to inpaint the missing microvessel signal based on the estimated local blood flow speed, facilitating more robust depiction of microvasculature with a limited amount of MBs. The proposed method was validated on an ex ovo chorioallantoic membrane and an in vivo rabbit kidney. Results demonstrated improved imaging performance on both microvessel density maps and blood flow speed maps. With the proposed method, the percentage of microvessel filling in a selected blood vessel at a given accumulation period was increased from 28.17% to 74.45%. A similar SR-UMI performance was achieved with MB numbers reduced by 85.96%, compared to that with the original MB number. The results indicate that the proposed method substantially improves the robustness of SR-UMI under a clinically relevant imaging scenario where SR-UMI is challenged by a limited MB accumulation time, reduced number of MBs, lowered imaging frame rate, and degraded signal-to-noise ratio.

摘要

基于对比微泡(MB)的超分辨率超声微血管成像(SR-UMI)克服了传统超声成像在空间分辨率和穿透深度之间的折衷,已成功应用于广泛的临床应用。然而,由于在给定的累积时间内检测到的 MB 数量有限,SR-UMI 的临床转化仍然具有挑战性。在这里,我们提出了一种基于卡尔曼滤波器的方法,用于稳健的 MB 跟踪和使用较少的 MB 来改进血流速度测量。开发了 MB 运动的加速度约束和方向约束,以控制估计 MB 轨迹的质量。开发了一种自适应插值方法,基于估计的局部血流速度对缺失的微血管信号进行内插,从而可以使用有限数量的 MB 更稳健地描绘微血管。该方法在鸡胚绒毛尿囊膜和活体兔肾上进行了验证。结果表明,在微血管密度图和血流速度图上均改善了成像性能。使用所提出的方法,在给定的累积周期内,选定血管中的微血管填充百分比从 28.17%增加到 74.45%。与原始 MB 数量相比,MB 数量减少 85.96%时,也可实现类似的 SR-UMI 性能。结果表明,在临床上相关的成像情况下,当 SR-UMI 受到有限的 MB 积累时间、MB 数量减少、降低的成像帧率和降低的信噪比的挑战时,该方法可显著提高 SR-UMI 的稳健性。

相似文献

1
Kalman Filter-Based Microbubble Tracking for Robust Super-Resolution Ultrasound Microvessel Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Sep;67(9):1738-1751. doi: 10.1109/TUFFC.2020.2984384. Epub 2020 Mar 31.
2
Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Feb;65(2):149-167. doi: 10.1109/TUFFC.2017.2778941.
5
On the Effects of Spatial Sampling Quantization in Super-Resolution Ultrasound Microvessel Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2264-2276. doi: 10.1109/TUFFC.2018.2832600. Epub 2018 May 4.
7
Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy ex-vivo and in-vivo.
Biomed Phys Eng Express. 2020 Apr 21;6(3):035019. doi: 10.1088/2057-1976/ab7f26.
9
Debiasing-Based Noise Suppression for Ultrafast Ultrasound Microvessel Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Aug;66(8):1281-1291. doi: 10.1109/TUFFC.2019.2918180. Epub 2019 May 22.
10
Acceleration-Based Kalman Tracking for Super-Resolution Ultrasound Imaging In Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Dec;70(12):1739-1748. doi: 10.1109/TUFFC.2023.3326863. Epub 2023 Dec 14.

引用本文的文献

1
Time evolution of piglet cerebral blood volume after resuscitation from hypoxic-ischemic insult.
Sci Rep. 2025 Jul 23;15(1):26806. doi: 10.1038/s41598-025-11898-8.
2
Advanced ultrasound methods to improve chronic kidney disease diagnosis.
Npj Imaging. 2024 Jul 25;2(1):22. doi: 10.1038/s44303-024-00023-5.
4
Velocity-Constraint Kalman Filtering for Enhanced Bubble Tracking in Motion-Compensated Ultrasound Localization Microscopy.
Research (Wash D C). 2025 Jun 4;8:0725. doi: 10.34133/research.0725. eCollection 2025.
6
First clinical utility of sensing Ultrasound Localization Microscopy (sULM): identifying renal pseudotumors.
Theranostics. 2025 Jan 1;15(1):233-244. doi: 10.7150/thno.100897. eCollection 2025.
7
3D ultrasound localization microscopy of the nonhuman primate brain.
EBioMedicine. 2025 Jan;111:105457. doi: 10.1016/j.ebiom.2024.105457. Epub 2024 Dec 20.
9
Super-resolution ultrasound and microvasculomics: a consensus statement.
Eur Radiol. 2024 Nov;34(11):7503-7513. doi: 10.1007/s00330-024-10796-3. Epub 2024 May 29.
10
Super-Resolution Ultrasound Reveals Cerebrovascular Impairment in a Mouse Model of Alzheimer's Disease.
J Neurosci. 2024 Feb 28;44(9):e1251232024. doi: 10.1523/JNEUROSCI.1251-23.2024.

本文引用的文献

1
3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):269-277. doi: 10.1109/TUFFC.2019.2943646. Epub 2019 Sep 25.
2
4D functional ultrasound imaging of whole-brain activity in rodents.
Nat Methods. 2019 Oct;16(10):994-997. doi: 10.1038/s41592-019-0572-y. Epub 2019 Sep 23.
3
Exploiting Flow Dynamics for Superresolution in Contrast-Enhanced Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Oct;66(10):1573-1586. doi: 10.1109/TUFFC.2019.2926062. Epub 2019 Jul 1.
4
Functional Ultrasound Imaging of Spinal Cord Hemodynamic Responses to Epidural Electrical Stimulation: A Feasibility Study.
Front Neurol. 2019 Mar 26;10:279. doi: 10.3389/fneur.2019.00279. eCollection 2019.
5
Ultrafast 3D Ultrasound Localization Microscopy Using a 32 × 32 Matrix Array.
IEEE Trans Med Imaging. 2019 Sep;38(9):2005-2015. doi: 10.1109/TMI.2018.2890358. Epub 2019 Apr 1.
7
On the Effects of Spatial Sampling Quantization in Super-Resolution Ultrasound Microvessel Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2264-2276. doi: 10.1109/TUFFC.2018.2832600. Epub 2018 May 4.
9
Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Feb;65(2):149-167. doi: 10.1109/TUFFC.2017.2778941.
10
Ultrasound localization microscopy to image and assess microvasculature in a rat kidney.
Sci Rep. 2017 Oct 20;7(1):13662. doi: 10.1038/s41598-017-13676-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验