Xing Paul, Perrot Vincent, Dominguez-Vargas Adan Ulises, Porée Jonathan, Quessy Stephan, Dancause Numa, Provost Jean
Department of Engineering Physics, Polytechnique Montréal, Montreal, Canada.
Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Canada.
EBioMedicine. 2025 Jan;111:105457. doi: 10.1016/j.ebiom.2024.105457. Epub 2024 Dec 20.
Haemodynamic changes occur in stroke and neurodegenerative diseases. Developing imaging techniques allowing the in vivo visualisation and quantification of cerebral blood flow would help better understand the underlying mechanism of these cerebrovascular diseases.
3D ultrasound localization microscopy (ULM) is a recently developed technology that can map the microvasculature of the brain at large depth and has been mainly used until now in rodents. In this study, we tested the feasibility of 3D ULM of the nonhuman primate (NHP) brain with a single 256-channel programmable ultrasound scanner.
We achieved a highly resolved vascular map of the macaque brain at large depth (down to 3 cm) in presence of craniotomy and durectomy using an 8-MHz multiplexed matrix probe. We were able to distinguish vessels as small as 26.9 μm. We also demonstrated that transcranial imaging of the macaque brain at similar depth was feasible using a 3-MHz probe and achieved a resolution of 60 μm.
This work paves the way to clinical applications of 3D ULM. In particular, transcranial 3D ULM in humans could become a tool for the non-invasive study and monitoring of the brain cerebrovascular changes occurring in neurological diseases.
This work was supported by the New Frontier in Research Fund (NFRFE-2022-00590), by the Canada Foundation for Innovation under grant 38095, by the Natural Sciences and Engineering Research Council of Canada (NSERC) under discovery grant RGPIN-2020-06786, by Brain Canada under grant PSG2019, and by the Canadian Institutes of Health Research (CIHR) under grant PJT-156047 and MPI-452530. Computing support was provided by the Digital Research Alliance of Canada.
中风和神经退行性疾病会发生血流动力学变化。开发能够在体内可视化和量化脑血流的成像技术将有助于更好地理解这些脑血管疾病的潜在机制。
三维超声定位显微镜(ULM)是一种最近开发的技术,可在大深度绘制大脑微血管图谱,目前主要用于啮齿动物。在本研究中,我们使用一台256通道可编程超声扫描仪测试了对非人类灵长类动物(NHP)大脑进行三维ULM的可行性。
我们使用8兆赫多路复用矩阵探头,在开颅和硬脑膜切除的情况下,获得了猕猴大脑大深度(达3厘米)的高分辨率血管图谱。我们能够分辨低至26.9微米的血管。我们还证明,使用3兆赫探头对猕猴大脑进行类似深度的经颅成像也是可行的,分辨率达到60微米。
这项工作为三维ULM的临床应用铺平了道路。特别是,人类经颅三维ULM可能成为无创研究和监测神经疾病中发生的脑血管变化的工具。
这项工作得到了研究基金新前沿(NFRFE - 2022 - 00590)、加拿大创新基金会38095号拨款、加拿大自然科学与工程研究理事会(NSERC)发现基金RGPIN - 2020 - 06786、加拿大脑部协会PSG2019号拨款以及加拿大卫生研究院(CIHR)PJT - 156047号拨款和MPI - 452530号拨款的支持。计算支持由加拿大数字研究联盟提供。