Department of Radiology, Aerospace Center Hospital, Beijing 100049, China.
Deepwise AI lab, Beijing 100080, China.
Aging (Albany NY). 2020 Apr 5;12(7):6206-6224. doi: 10.18632/aging.103017.
In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.
在本文中,我们应用了一种新的方法来检测阿尔茨海默病(AD),该方法基于结构磁共振成像(sMRI)数据集。具体来说,该方法涉及一种新的机器学习分类算法,名为广义分裂线性化 Bregman 迭代(GSplit LBI)。它结合了逻辑回归和结构稀疏正则化。在研究中,我们招募了 57 名 AD 患者和 47 名正常对照(NC)。我们首先提取了所有受试者的全脑灰质体积值,然后使用 GSplit LBI 结合 10 折完全交叉验证方法构建了一个预测分类模型。该模型的准确率达到了 90.44%。为了进一步验证数据集哪些体素对预测结果有更大的影响,我们对模型参数进行了排名,得到了模型参数的前 6%。为了验证模型预测的泛化和特征选择的稳定性,我们在阿尔茨海默病神经影像学倡议(ADNI)和一个中国数据集上进行了交叉测试,在不同队列上都取得了良好的性能。总之,基于 sMRI 数据集,我们的算法不仅在具有高精度的本地队列中表现良好,而且在不同队列中的模型预测泛化和特征选择稳定性方面也表现良好。