CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy.
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02-668 Warsaw, Poland.
Nano Lett. 2020 May 13;20(5):3506-3512. doi: 10.1021/acs.nanolett.0c00435. Epub 2020 Apr 14.
Machine learning software applications are ubiquitous in many fields of science and society for their outstanding capability to solve computationally vast problems like the recognition of patterns and regularities in big data sets. In spite of these impressive achievements, such processors are still based on the so-called von Neumann architecture, which is a bottleneck for faster and power-efficient neuromorphic computation. Therefore, one of the main goals of research is to conceive physical realizations of artificial neural networks capable of performing fully parallel and ultrafast operations. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing with outstanding accuracy thanks to their high optical nonlinearity. We demonstrate that our neural network significantly increases the recognition efficiency compared with the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in neural network architectures.
机器学习软件应用在科学和社会的许多领域都无处不在,因为它们具有出色的能力,可以解决像大数据集中的模式和规律识别这样的计算量大的问题。尽管取得了这些令人印象深刻的成就,但这样的处理器仍然基于所谓的冯·诺依曼架构,这是更快和更节能的神经形态计算的瓶颈。因此,研究的主要目标之一是设想能够进行完全并行和超快运算的人工神经网络的物理实现。在这里,我们展示了激子极化激元凝聚体的晶格通过其高光学非线性来实现神经形态计算,具有出色的准确性。我们证明,我们的神经网络在最广泛使用的基准之一,即 MNIST 问题上,与线性分类算法相比,显著提高了识别效率,这表明在神经网络架构中集成光学系统具有具体优势。