Liran Dror, Baldwin Kirk, Pfeiffer Loren, Deng Hui, Rapaport Ronen
Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Nano Lett. 2025 Aug 20;25(33):12503-12508. doi: 10.1021/acs.nanolett.5c02461. Epub 2025 Aug 7.
The next generation of photonic circuits will require programmable, subnanosecond, and energy-efficient components on a scalable platform for quantum and neuromorphic computing. Here, we present subnanosecond electrical control of highly nonlinear light-matter hybrid quasi-particles, called waveguide exciton-dipolaritons, in a highly scalable waveguide-on-chip geometry, and with extremely low power consumption. Our device performs as an optical transistor with a GHz-rate electrical modulation at a record-low total energy consumption <8 fJ/bit and a compact active area of down to 25 μm. This work establishes waveguide-dipolariton platforms for scalable, electrically reconfigurable, ultralow power photonic circuits for both classical and quantum computing and communication.
下一代光子电路将需要在可扩展平台上具备可编程、亚纳秒级且节能的组件,以用于量子和神经形态计算。在此,我们展示了在高度可扩展的片上波导几何结构中,对一种称为波导激子 - 偶极子的高度非线性光 - 物质混合准粒子进行亚纳秒级电控制,并且功耗极低。我们的器件作为一个光学晶体管,在创纪录的低总能耗<8 fJ/比特以及低至25μm的紧凑有源面积下,实现了GHz速率的电调制。这项工作为用于经典和量子计算及通信的可扩展、电可重构、超低功耗光子电路建立了波导 - 偶极子平台。