Suppr超能文献

作为二值化神经形态网络的极化激元晶格

Polariton lattices as binarized neuromorphic networks.

作者信息

Sedov Evgeny, Kavokin Alexey

机构信息

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

Stoletov Vladimir State University, Vladimir, 600000, Russia.

出版信息

Light Sci Appl. 2025 Jan 16;14(1):52. doi: 10.1038/s41377-024-01719-4.

Abstract

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication. The binary neuron switching mechanism, driven by the nonlinear repulsion through the excitonic component of polaritons, offers computational efficiency and scalability advantages over continuous weight neural networks. Our network enables parallel processing, enhancing computational speed compared to sequential or pulse-coded binary systems. The system's performance was evaluated using diverse datasets, including the MNIST dataset for image recognition and the Speech Commands dataset for voice recognition tasks. In both scenarios, the proposed system demonstrates the potential to outperform existing polaritonic neuromorphic systems. For image recognition, this is evidenced by an impressive predicted classification accuracy of up to 97.5%. In voice recognition, the system achieved a classification accuracy of about 68% for the ten-class subset, surpassing the performance of conventional benchmark, the Hidden Markov Model with Gaussian Mixture Model.

摘要

我们介绍了一种基于激子-极化激元凝聚体晶格的新型神经形态网络架构,通过非共振光泵浦实现复杂的相互连接和能量激发。该网络采用二元框架,其中每个神经元借助成对耦合凝聚体的空间相干性执行二元运算。这种由极化激元的弹道传播产生的相干性确保了网络范围内高效的通信。由极化激元的激子成分通过非线性排斥驱动的二元神经元切换机制,与连续权重神经网络相比具有计算效率和可扩展性优势。我们的网络实现了并行处理,与顺序或脉冲编码二元系统相比提高了计算速度。使用包括用于图像识别的MNIST数据集和用于语音识别任务的语音命令数据集在内的各种数据集对系统性能进行了评估。在这两种情况下,所提出的系统都显示出优于现有极化激元神经形态系统的潜力。对于图像识别,高达97.5%的令人印象深刻的预测分类准确率证明了这一点。在语音识别中,该系统在十类子集中实现了约68%的分类准确率,超过了传统基准高斯混合模型隐马尔可夫模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f655/11739516/86843d066fea/41377_2024_1719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验