Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
Colloids Surf B Biointerfaces. 2020 Jul;191:110980. doi: 10.1016/j.colsurfb.2020.110980. Epub 2020 Mar 31.
Rheumatoid arthritis (RA) is a kind of systemic autoimmune disease, and patients with RA usually suffer serious pain, resulting in low quality of life. The development of drug delivery systems (DDSs) provides a valid approach for RA therapy via inhibiting the secretion of inflammatory cytokines from macrophages. As a prevailing drug nanocarrier with distinctive superiority, polymeric nanoparticles (NPs) have attracted much attention in recent years. However, low biocompatibility and limited exploitation of drug with high efficiency are still the main challenges in RA treatment. To overcome the limitations, we prepared a biocompatible copolymer methoxy-poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA). Moreover, benzoylaconitine (BAC) with superior anti-inflammatory effect was selected as model drug. It was isolated from Aconitum kusnezoffii Reichb and encapsulated into mPEG-PLGA NPs (NP/BAC) to increase the bioavailablity of BAC. The NPs exhibited high cytocompatibility for activated macrophages and well compatibility with red blood cells. Furthermore, the anti-inflammatory property of NP/BAC was testified by substantially inhibiting secretion of pro-inflammatory cytokines. The TNF-α and IL-1β cytokines of NP/BAC group reduced 70 % and 66 % compared with that of activated macrophages. Especially, NP/BAC reduced the overexpression of NF-κB p65 to inhibit NF-κB signaling pathway, which was a critical regulator of inflammatory responses. NP/BAC also showed efficient in vivo anti-inflammatory effect with high ear (69.8 %) and paw (87.1 %) swelling suppressing rate. These results revealed the anti-inflammatory mechanism of NP/BAC and proved it was a suitable DDS to suppress inflammation, providing a promising strategy for RA therapy and research of Aconitum kusnezoffii Reichb.
类风湿性关节炎(RA)是一种系统性自身免疫性疾病,患者通常会遭受严重的疼痛,导致生活质量降低。药物传递系统(DDS)的发展为通过抑制巨噬细胞中炎症细胞因子的分泌来治疗 RA 提供了有效的方法。作为一种具有独特优势的流行药物纳米载体,聚合物纳米颗粒(NPs)近年来受到了广泛关注。然而,低生物相容性和对高效药物的有限开发仍然是 RA 治疗的主要挑战。为了克服这些限制,我们制备了一种具有良好生物相容性的共聚物甲氧基聚(乙二醇)-聚(乳酸-共-乙醇酸)(mPEG-PLGA)。此外,选择具有优异抗炎作用的苯甲酰乌头碱(BAC)作为模型药物。它是从乌头属植物中分离出来的,被包裹在 mPEG-PLGA NPs(NP/BAC)中,以提高 BAC 的生物利用度。NPs 对激活的巨噬细胞表现出高细胞相容性和与红细胞的良好相容性。此外,NP/BAC 通过显著抑制促炎细胞因子的分泌来证明其抗炎特性。与激活的巨噬细胞相比,NP/BAC 组的 TNF-α 和 IL-1β 细胞因子分别减少了 70%和 66%。特别是,NP/BAC 降低了 NF-κB p65 的过度表达,从而抑制了 NF-κB 信号通路,该通路是炎症反应的关键调节因子。NP/BAC 还在体内表现出高效的抗炎作用,耳(69.8%)和足(87.1%)肿胀抑制率高。这些结果揭示了 NP/BAC 的抗炎机制,并证明它是一种合适的 DDS,可抑制炎症,为 RA 治疗和乌头属植物的研究提供了有前途的策略。