Mizuno Naomi, Camino Fernando, Du Xu
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
Nanomaterials (Basel). 2020 Apr 2;10(4):666. doi: 10.3390/nano10040666.
The implementation of aberration-corrected electron beam lithography (AC-EBL) in a 200 keV scanning transmission electron microscope (STEM) is a novel technique that could be used for the fabrication of quantum devices based on 2D atomic crystals with single nanometer critical dimensions, allowing to observe more robust quantum effects. In this work we study electron beam sculpturing of nanostructures on suspended graphene field effect transistors using AC-EBL, focusing on the in situ characterization of the impact of electron beam exposure on device electronic transport quality. When AC-EBL is performed on a graphene channel (local exposure) or on the outside vicinity of a graphene channel (non-local exposure), the charge transport characteristics of graphene can be significantly affected due to charge doping and scattering. While the detrimental effect of non-local exposure can be largely removed by vigorous annealing, local-exposure induced damage is irreversible and cannot be fixed by annealing. We discuss the possible causes of the observed exposure effects. Our results provide guidance to the future development of high-energy electron beam lithography for nanomaterial device fabrication.
在200 keV扫描透射电子显微镜(STEM)中实施像差校正电子束光刻(AC-EBL)是一种新技术,可用于制造基于具有单纳米临界尺寸的二维原子晶体的量子器件,从而能够观察到更强健的量子效应。在这项工作中,我们使用AC-EBL研究悬浮石墨烯场效应晶体管上纳米结构的电子束雕刻,重点关注电子束曝光对器件电子输运质量影响的原位表征。当在石墨烯通道上进行AC-EBL(局部曝光)或在石墨烯通道外部附近进行AC-EBL(非局部曝光)时,由于电荷掺杂和散射,石墨烯的电荷传输特性会受到显著影响。虽然通过剧烈退火可以很大程度上消除非局部曝光的有害影响,但局部曝光引起的损伤是不可逆的,无法通过退火修复。我们讨论了观察到的曝光效应的可能原因。我们的结果为用于纳米材料器件制造的高能电子束光刻的未来发展提供了指导。