Dyck Ondrej, Swett Jacob L, Evangeli Charalambos, Lupini Andrew R, Mol Jan A, Jesse Stephen
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Department of Materials, University of Oxford, Oxford, OX1 3PH, UK.
Small Methods. 2022 Mar;6(3):e2101245. doi: 10.1002/smtd.202101245. Epub 2021 Dec 15.
Graphene is proposed for use in various nanodevice designs, many of which harness emergent quantum properties for device functionality. However, visualization, measurement, and manipulation become nontrivial at nanometer and atomic scales, representing a significant challenge for device fabrication, characterization, and optimization at length scales where quantum effects emerge. Here, proof of principle results at the crossroads between 2D nanoelectronic devices, e-beam-induced modulation, and imaging with secondary electron e-beam induced currents (SEEBIC) is presented. A device platform compatible with scanning transmission electron microscopy investigations is introduced. Then how the SEEBIC imaging technique can be used to visualize conductance and connectivity in single layer graphene nanodevices, even while supported on a thicker substrate (conditions under which conventional imaging fails) is shown. Finally, it is shown that the SEEBIC imaging technique can detect subtle differences in charge transport through time in nonohmic graphene nanoconstrictions indicating the potential to reveal dynamic electronic processes.
石墨烯被提议用于各种纳米器件设计,其中许多设计利用新兴的量子特性来实现器件功能。然而,在纳米和原子尺度上的可视化、测量和操纵变得并非易事,这对量子效应出现的长度尺度下的器件制造、表征和优化构成了重大挑战。在此,展示了在二维纳米电子器件、电子束诱导调制以及二次电子束诱导电流成像(SEEBIC)之间的交叉点上的原理验证结果。介绍了一种与扫描透射电子显微镜研究兼容的器件平台。然后展示了即使在单层石墨烯纳米器件支撑在较厚衬底上(传统成像在此条件下失效)时,SEEBIC成像技术如何用于可视化其电导和连通性。最后,表明SEEBIC成像技术可以检测非欧姆石墨烯纳米缩颈中电荷传输随时间的细微差异,这表明其有揭示动态电子过程的潜力。