Suppr超能文献

后生动物寄生虫学的后基因组进展。

Post-genomic progress in helminth parasitology.

机构信息

School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.

出版信息

Parasitology. 2020 Jul;147(8):835-840. doi: 10.1017/S0031182020000591. Epub 2020 Apr 7.

Abstract

Helminth parasitology is an important discipline, which poses often unique technical challenges. One challenge is that helminth parasites, particularly those in humans, are often difficult to obtain alive and in sufficient quantities for study; another is the challenge of studying these organisms in vitro - no helminth parasite life cycle has been fully recapitulated outside of a host. Arguably, the key issue retarding progress in helminth parasitology has been a lack of experimental tools and resources, certainly relative to the riches that have driven many parasitologists to adopt free-living model organisms as surrogate systems. In response to these needs, the past 10-12 years have seen the beginnings of helminth parasitology's journey into the 'omics' era, with the release of abundant sequencing resources, and the functional genomics tools with which to test biological hypotheses. To reflect this progress, the 2019 Autumn Symposium of the British Society for Parasitology was held in Queen's University Belfast on the topic of 'post-genomic progress in helminth parasitology'. This issue presents examples of the current state of play in the field, while this editorial summarizes how genomic datasets and functional genomic tools have stimulated impressive recent progress in our understanding of parasite biology.

摘要

寄生虫学是一门重要的学科,它常常带来独特的技术挑战。其中一个挑战是,寄生虫,尤其是那些寄生在人体中的寄生虫,往往难以获得活体并获取足够的数量进行研究;另一个挑战是在体外研究这些生物体的挑战——没有寄生虫的生命周期可以在宿主之外完全再现。可以说,阻碍寄生虫学发展的关键问题一直是缺乏实验工具和资源,这当然与推动许多寄生虫学家采用自由生活的模式生物作为替代系统的丰富资源形成鲜明对比。为了应对这些需求,过去 10-12 年里,寄生虫学已经开始进入“组学”时代,测序资源丰富,功能基因组学工具也可用于检验生物学假说。为了反映这一进展,2019 年英国寄生虫学会秋季研讨会在贝尔法斯特女王大学举行,主题是“寄生虫学后基因组学的进展”。本期专题介绍了该领域的当前现状,而本社论总结了基因组数据集和功能基因组工具如何刺激了我们对寄生虫生物学的理解的惊人的最新进展。

相似文献

1
Post-genomic progress in helminth parasitology.
Parasitology. 2020 Jul;147(8):835-840. doi: 10.1017/S0031182020000591. Epub 2020 Apr 7.
2
Anthelmintic metabolism in parasitic helminths: proteomic insights.
Parasitology. 2012 Aug;139(9):1205-17. doi: 10.1017/S003118201200087X. Epub 2012 Jul 10.
3
Population genomics of helminth parasites.
J Helminthol. 2023 Mar 17;97:e29. doi: 10.1017/S0022149X23000123.
4
CRISPR in Parasitology: Not Exactly Cut and Dried!
Trends Parasitol. 2019 Jun;35(6):409-422. doi: 10.1016/j.pt.2019.03.004. Epub 2019 Apr 18.
5
Genome-wide Approaches to Investigate Anthelmintic Resistance.
Trends Parasitol. 2019 Apr;35(4):289-301. doi: 10.1016/j.pt.2019.01.004. Epub 2019 Feb 4.
6
Ten Events That Defined Anthelmintic Resistance Research.
Trends Parasitol. 2018 Jul;34(7):553-563. doi: 10.1016/j.pt.2018.05.001. Epub 2018 May 23.
7
Forty years of helminth biochemistry.
Parasitology. 2009 Oct;136(12):1633-42. doi: 10.1017/S003118200900568X. Epub 2009 Mar 5.
9
The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths.
Trends Parasitol. 2016 Jun;32(6):481-491. doi: 10.1016/j.pt.2016.02.004. Epub 2016 Mar 9.
10
Trematode Genomics and Proteomics.
Adv Exp Med Biol. 2019;1154:411-436. doi: 10.1007/978-3-030-18616-6_13.

引用本文的文献

1
Eukaryotic composition across seasons and social groups in the gut microbiota of wild baboons.
Anim Microbiome. 2025 Jun 21;7(1):70. doi: 10.1186/s42523-025-00436-6.
2
Parasite spillover rather than niche expansion explains infection of host brain by diplostomid eye flukes.
Proc Biol Sci. 2025 Feb;292(2040):20242648. doi: 10.1098/rspb.2024.2648. Epub 2025 Feb 5.
4
Defining an optimal control for RNAi experiments with adult Schistosoma mansoni.
Sci Rep. 2023 Jun 16;13(1):9766. doi: 10.1038/s41598-023-36826-6.
6
Global genomic methylation related to the degree of parasitism in cattle.
Sci Rep. 2022 Oct 28;12(1):18135. doi: 10.1038/s41598-022-22753-5.
7
What lies behind the curtain: Cryptic diversity in helminth parasites of human and veterinary importance.
Curr Res Parasitol Vector Borne Dis. 2022 Jun 11;2:100094. doi: 10.1016/j.crpvbd.2022.100094. eCollection 2022.
8
Helminth lipidomics: Technical aspects and future prospects.
Curr Res Parasitol Vector Borne Dis. 2021 Feb 24;1:100018. doi: 10.1016/j.crpvbd.2021.100018. eCollection 2021.
9
Developmental Regulation and Functional Prediction of microRNAs in an Expanded miRNome.
Front Cell Infect Microbiol. 2022 Feb 10;12:811123. doi: 10.3389/fcimb.2022.811123. eCollection 2022.

本文引用的文献

2
A single-cell RNA-seq atlas of identifies a key regulator of blood feeding.
Science. 2020 Sep 25;369(6511):1644-1649. doi: 10.1126/science.abb7709.
3
CRISPR/Cas9-mediated genome editing: From basic research to translational medicine.
J Cell Mol Med. 2020 Apr;24(7):3766-3778. doi: 10.1111/jcmm.14916. Epub 2020 Feb 25.
4
Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock.
Vet Clin North Am Food Anim Pract. 2020 Mar;36(1):17-30. doi: 10.1016/j.cvfa.2019.12.001.
5
Helminth Vaccines in Ruminants: From Development to Application.
Vet Clin North Am Food Anim Pract. 2020 Mar;36(1):159-171. doi: 10.1016/j.cvfa.2019.10.001.
6
Preventive chemotherapy and anthelmintic resistance of soil-transmitted helminths - Can we learn nothing from veterinary medicine?
One Health. 2019 Oct 31;9:100106. doi: 10.1016/j.onehlt.2019.100106. eCollection 2020 Jun.
7
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis.
Parasit Vectors. 2019 Dec 30;12(1):611. doi: 10.1186/s13071-019-3866-0.
8
Schistosomiasis - Assessing Progress toward the 2020 and 2025 Global Goals.
N Engl J Med. 2019 Dec 26;381(26):2519-2528. doi: 10.1056/NEJMoa1812165.
10
Cross-Species Suppression of Hepatoma Cell Growth and Migration by a Schistosoma japonicum MicroRNA.
Mol Ther Nucleic Acids. 2019 Dec 6;18:400-412. doi: 10.1016/j.omtn.2019.09.006. Epub 2019 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验