Suppr超能文献

拼车与机动车事故:基于出行水平数据的空间生态学病例交叉研究

Ridesharing and motor vehicle crashes: a spatial ecological case-crossover study of trip-level data.

机构信息

Department of Epidemiology, Mailman School of Public Health, Columbia University, New York city, New York, USA

Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.

出版信息

Inj Prev. 2021 Apr;27(2):118-123. doi: 10.1136/injuryprev-2020-043644. Epub 2020 Apr 6.

Abstract

BACKGROUND

Ridesharing services (eg, Uber, Lyft) have facilitated over 11 billion trips worldwide since operations began in 2010, but the impacts of ridesharing on motor vehicle injury crashes are largely unknown.

  • METHODS: This spatial ecological case-cross over used highly spatially and temporally resolved trip-level rideshare data and incident-level injury crash data for New York City (NYC) for 2017 and 2018. The space-time units of analysis were NYC taxi zone polygons partitioned into hours. For each taxi zone-hour we calculated counts of rideshare trip origins and rideshare trip destinations. Case units were taxi zone-hours in which any motor vehicle injury crash occurred, and matched control units were the same taxi zone from 1 week before (-168 hours) and 1 week after (+168 hours) the case unit. Conditional logistic regression models estimated the odds of observing a crash (separated into all injury crashes, motorist injury crashes, pedestrian injury crashes, cyclist injury crashes) relative to rideshare trip counts. Models controlled for taxi trips and other theoretically relevant covariates (eg, precipitation, holidays).

RESULTS

Each additional 100 rideshare trips originating within a taxi zone-hour was associated with 4.6% increased odds of observing any injury crash compared with the control taxi zone-hours (OR=1.046; 95% CI 1.032 to 1.060). Associations were detected for motorist injury and pedestrian injury crashes, but not cyclist injury crashes. Findings were substantively similar for analyses conducted using trip destinations as the exposure of interest.

CONCLUSIONS

Ridesharing contributes to increased injury burden due to motor vehicle crashes, particularly for motorist and pedestrian injury crashes at trip nodes.

摘要

背景

自 2010 年运营以来,拼车服务(如优步、来福车)在全球范围内已经完成了超过 110 亿次出行,但拼车对机动车事故的影响在很大程度上仍不清楚。

方法

本空间生态学病例交叉研究使用了高度时空分辨的出行级拼车数据和 2017 年和 2018 年纽约市(NYC)的事故级伤害性碰撞数据。分析的时空单位是划分为小时的 NYC 出租车区多边形。对于每个出租车区-小时,我们计算了拼车出行起点和终点的计数。病例单位是发生任何机动车伤害性碰撞的出租车区-小时,匹配的对照单位是病例单位前 1 周(-168 小时)和后 1 周(+168 小时)的同一出租车区。条件逻辑回归模型估计了观察到碰撞的可能性(分为所有伤害性碰撞、驾驶员伤害性碰撞、行人伤害性碰撞、自行车手伤害性碰撞)相对于拼车出行次数。模型控制了出租车出行和其他理论上相关的协变量(例如,降水、节假日)。

结果

与对照出租车区-小时相比,每增加 100 次在出租车区-小时内出发的额外拼车出行,观察到任何伤害性碰撞的几率增加 4.6%(OR=1.046;95%CI 1.032 至 1.060)。检测到驾驶员伤害和行人伤害碰撞的关联,但未检测到自行车手伤害碰撞的关联。使用出行目的地作为感兴趣的暴露因素进行分析时,结果基本相似。

结论

拼车导致机动车事故造成的伤害负担增加,特别是在出行节点处导致驾驶员和行人的伤害性碰撞。

相似文献

引用本文的文献

4
The unknown denominator problem in population studies of disease frequency.疾病频率人群研究中的未知分母问题。
Spat Spatiotemporal Epidemiol. 2020 Nov;35:100361. doi: 10.1016/j.sste.2020.100361. Epub 2020 Jul 18.

本文引用的文献

4
Uber and Metropolitan Traffic Fatalities in the United States.美国优步与大城市交通死亡事故
Am J Epidemiol. 2016 Aug 1;184(3):192-8. doi: 10.1093/aje/kww062. Epub 2016 Jul 22.
5
ECONOMICS. Matching markets in the digital age.经济学。数字时代的匹配市场。
Science. 2016 May 27;352(6289):1056-7. doi: 10.1126/science.aaf7781.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验