Yan Shifeng, Wang Weidong, Li Xing, Ren Jie, Yun Wentao, Zhang Kunxi, Li Guifei, Yin Jingbo
Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
J Mater Chem B. 2018 Oct 28;6(40):6377-6390. doi: 10.1039/c8tb01928b. Epub 2018 Sep 17.
Injectable hydrogels have aroused much attention for the advantages such as minimally invasive surgery, avoidance of surgical trauma, and filling and repairing irregularly shaped tissue defects. Mussel-inspired injectable hydrogels can be immobilized on the surface of tissues, resulting in stable biomaterial-tissue integration. However, the commonly used biomimetic mussel-inspired hydrogels are prepared by the oxidation of catechol groups, which involves the introduction or production of cytotoxic substances. Moreover, mussel-inspired hydrogels generally display weak mechanical strength and poor adhesiveness because of the consumption of catechol groups during oxidation. Herein, we described a strategy to prepare mussel-inspired injectable hydrogels via the Schiff base reaction. We grafted dopamine, an adhesive motif discovered in the holdfast pads of mussels, to aldehyde-modified alginate backbones. A series of injectable mussel-inspired adhesive, self-healing hydrogels were fabricated by in situ crosslinking of hydrazide-modified poly(l-glutamic acid) (PLGA-ADH) and dual-functionalized alginate (catechol- and aldehyde-modified alginate, ALG-CHO-Catechol). Also, oxidized ALG-CHO-Catechol hydrogels and PLGA/ALG-CHO hydrogels were prepared for comparison. The effects of the crosslinking method, catechol grafting ratio and solid content on the mechanical properties, self-healing behavior, adhesive properties, and hemostatic ability were investigated. Compared with the observations for oxidized ALG-CHO-Catechol hydrogels, more reasonable gelation time and notably enhanced mechanical properties and adhesive behavior were detected in the PLGA/ALG-CHO-Catechol hydrogel system. The PLGA/ALG-CHO-Catechol hydrogels also displayed clear self-healing ability and good cytocompatibility. The strong bioadhesion endowed the PLGA/ALG-CHO-Catechol hydrogels with superior hemostatic performance. These results suggested that PLGA/ALG-CHO-Catechol hydrogel might have great potential as an antibleeding and tissue repair material.
可注射水凝胶因其具有微创手术、避免手术创伤以及填充和修复不规则形状组织缺损等优点而备受关注。受贻贝启发的可注射水凝胶能够固定在组织表面,实现生物材料与组织的稳定整合。然而,常用的仿生贻贝启发水凝胶是通过儿茶酚基团的氧化制备的,这涉及细胞毒性物质的引入或产生。此外,由于氧化过程中儿茶酚基团的消耗,受贻贝启发的水凝胶通常表现出较弱的机械强度和较差的粘附性。在此,我们描述了一种通过席夫碱反应制备受贻贝启发的可注射水凝胶的策略。我们将多巴胺(一种在贻贝固着垫中发现的粘附基序)接枝到醛修饰的海藻酸盐主链上。通过酰肼修饰的聚(L-谷氨酸)(PLGA-ADH)与双功能化海藻酸盐(儿茶酚和醛修饰的海藻酸盐,ALG-CHO-Catechol)的原位交联,制备了一系列受贻贝启发的可注射粘性、自愈合水凝胶。此外,还制备了氧化的ALG-CHO-Catechol水凝胶和PLGA/ALG-CHO水凝胶用于比较。研究了交联方法、儿茶酚接枝率和固含量对机械性能、自愈合行为、粘附性能和止血能力的影响。与氧化的ALG-CHO-Catechol水凝胶的观察结果相比,PLGA/ALG-CHO-Catechol水凝胶体系具有更合理的凝胶化时间,并且机械性能和粘附行为显著增强。PLGA/ALG-CHO-Catechol水凝胶还表现出明显的自愈合能力和良好的细胞相容性。强大的生物粘附性赋予PLGA/ALG-CHO-Catechol水凝胶优异的止血性能。这些结果表明,PLGA/ALG-CHO-Catechol水凝胶作为一种止血和组织修复材料可能具有巨大的潜力。