Suppr超能文献

LAce模块:通过整合动态相关性鉴定竞争性内源RNA模块

LAceModule: Identification of Competing Endogenous RNA Modules by Integrating Dynamic Correlation.

作者信息

Wen Xiao, Gao Lin, Hu Yuxuan

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, China.

出版信息

Front Genet. 2020 Mar 18;11:235. doi: 10.3389/fgene.2020.00235. eCollection 2020.

Abstract

Competing endogenous RNAs (ceRNAs) regulate each other by competitively binding microRNAs they share. This is a vital post-transcriptional regulation mechanism and plays critical roles in physiological and pathological processes. Current computational methods for the identification of ceRNA pairs are mainly based on the correlation of the expression of ceRNA candidates and the number of shared microRNAs, without considering the sensitivity of the correlation to the expression levels of the shared microRNAs. To overcome this limitation, we introduced liquid association (LA), a dynamic correlation measure, which can evaluate the sensitivity of the correlation of ceRNAs to microRNAs, as an additional factor for the detection of ceRNAs. To this end, we firstly analyzed the effect of LA on detecting ceRNA pairs. Subsequently, we proposed an LA-based framework, termed LAceModule, to identify ceRNA modules by integrating the conventional Pearson correlation coefficient and dynamic correlation LA with multi-view non-negative matrix factorization. Using breast and liver cancer datasets, the experimental results demonstrated that LA is a useful measure in the detection of ceRNA pairs and modules. We found that the identified ceRNA modules play roles in cell adhesion, cell migration, and cell-cell communication. Furthermore, our results show that ceRNAs may represent potential drug targets and markers for the treatment and prognosis of cancer.

摘要

竞争性内源RNA(ceRNA)通过竞争性结合它们共有的微小RNA相互调节。这是一种重要的转录后调控机制,在生理和病理过程中发挥关键作用。目前用于鉴定ceRNA对的计算方法主要基于ceRNA候选物表达的相关性以及共享微小RNA的数量,而没有考虑这种相关性对共享微小RNA表达水平的敏感性。为了克服这一局限性,我们引入了液相关联(LA),一种动态相关性度量,它可以评估ceRNA与微小RNA相关性的敏感性,作为检测ceRNA的一个附加因素。为此,我们首先分析了LA对检测ceRNA对的影响。随后,我们提出了一个基于LA的框架,称为LAceModule,通过将传统的皮尔逊相关系数和动态相关性LA与多视图非负矩阵分解相结合来识别ceRNA模块。使用乳腺癌和肝癌数据集,实验结果表明LA在检测ceRNA对和模块方面是一种有用的度量。我们发现鉴定出的ceRNA模块在细胞黏附、细胞迁移和细胞间通讯中发挥作用。此外,我们的结果表明ceRNA可能代表癌症治疗和预后的潜在药物靶点和标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ad/7093494/29f03330892a/fgene-11-00235-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验