Han M-G, Garlow J A, Kharkov Y, Camacho L, Rov R, Sauceda J, Vats G, Kisslinger K, Kato T, Sushkov O, Zhu Y, Ulrich C, Söhnel T, Seidel J
Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
School of Physics, UNSW Sydney, Sydney, NSW 2052, Australia.
Sci Adv. 2020 Mar 27;6(13):eaax2138. doi: 10.1126/sciadv.aax2138. eCollection 2020 Mar.
Topologically nontrivial spin textures such as vortices, skyrmions, and monopoles are promising candidates as information carriers for future quantum information science. Their controlled manipulation including creation and annihilation remains an important challenge toward practical applications and further exploration of their emergent phenomena. Here, we report controlled evolution of the helical and skyrmion phases in thin films of multiferroic Te-doped CuOSeO as a function of material thickness, dopant, temperature, and magnetic field using in situ Lorentz phase microscopy. We report two previously unknown phenomena in chiral spin textures in multiferroic CuOSeO: anisotropic scaling and channeling with a fixed-Q state. The skyrmion channeling effectively suppresses the recently reported second skyrmion phase formation at low temperature. Our study provides a viable way toward controlled manipulation of skyrmion lattices, envisaging chirality-controlled skyrmion flow circuits and enabling precise measurement of emergent electromagnetic induction and topological Hall effects in skyrmion lattices.
诸如涡旋、斯格明子和磁单极子等拓扑非平凡自旋纹理,有望成为未来量子信息科学的信息载体。对它们的可控操纵,包括产生和湮灭,仍然是实现实际应用以及进一步探索其涌现现象面临的一项重大挑战。在此,我们利用原位洛伦兹相显微镜,报告了多铁性掺碲CuOSeO薄膜中螺旋相和斯格明子相随材料厚度、掺杂剂、温度和磁场的受控演化。我们报告了多铁性CuOSeO手性自旋纹理中两个此前未知的现象:各向异性标度和固定Q态下的沟道效应。斯格明子沟道效应有效地抑制了最近报道的低温下第二个斯格明子相的形成。我们的研究为斯格明子晶格的可控操纵提供了一条可行途径,设想了手性可控的斯格明子流电路,并能够精确测量斯格明子晶格中涌现的电磁感应和拓扑霍尔效应。