Suppr超能文献

磁电体CuOSeO₃中斯格明子晶格对电场的滞后响应

Hysteretic Responses of Skyrmion Lattices to Electric Fields in Magnetoelectric CuOSeO.

作者信息

Han Myung-Geun, Camino Fernando, Vorobyev Pavel A, Garlow Joseph, Rov Rosanna, Söhnel Tilo, Seidel Jan, Mostovoy Maxim, Tretiakov Oleg A, Zhu Yimei

机构信息

Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, New York 11973, United States.

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.

出版信息

Nano Lett. 2023 Aug 9;23(15):7143-7149. doi: 10.1021/acs.nanolett.3c02034. Epub 2023 Jul 31.

Abstract

Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric CuOSeO. We show that electric fields not only stabilize the hexagonally packed skyrmion lattices in the entire sample in a hysteretic manner but also induce the rotation of their reciprocal vector discretely by 30°. The nonvolatile and energy-efficient skyrmion lattice control by electric fields demonstrated in this work provides an important foundation for designing skyrmion-based qubits and memory devices.

摘要

电场对诸如斯格明子等拓扑非平凡磁纹理的控制,为超越当前硅基技术的未来自旋电子学带来了范式转变。虽然X射线和中子散射研究已取得重大进展,但直接观察此类纳米级自旋结构及其由外部电场驱动的动力学,在理解其潜在机制和利用其功能方面仍是一项挑战。在此,我们利用低温透射电子显微镜,结合液氦温度下的电场和磁场,报告了磁电材料CuOSeO薄片中斯格明子对电场的晶体取向依赖性响应。我们表明,电场不仅以滞后方式稳定了整个样品中的六角形排列斯格明子晶格,还使其倒易矢量离散地旋转30°。这项工作中展示的电场对斯格明子晶格的非易失性和节能控制,为设计基于斯格明子的量子比特和存储设备提供了重要基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验