Suppr超能文献

电场驱动的单个磁 skyrmion 开关。

Electric-field-driven switching of individual magnetic skyrmions.

机构信息

Department of Physics, University of Hamburg, 20355 Hamburg, Germany.

出版信息

Nat Nanotechnol. 2017 Feb;12(2):123-126. doi: 10.1038/nnano.2016.234. Epub 2016 Nov 7.

Abstract

Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.

摘要

用电场控制磁性是开发未来节能设备的关键挑战。目前的磁信息技术主要基于需要局部磁场或自旋扭矩的写入过程,但也已经证明,在外加电场的作用下,磁性可以发生改变。这归因于自旋相关屏蔽引起的磁晶各向异性的变化以及能带结构、原子位置或与相邻氧化物层的杂化的变化。然而,由于电场不破坏时间反演对称性,与时间反演相关的状态之间的转换(例如在现有技术中使用的磁化向上和向下)并不直接,因此已经应用了几种解决方法来通过电场在双稳态磁态之间进行切换,包括由于电场导致的材料组成的变化。在这里,我们证明了局部电场可以用于在磁斯格明子和铁磁态之间进行可逆切换。这两种状态在拓扑上是不等价的,我们发现电场的方向直接决定最终状态。这一观察结果确立了将电场写入与最近设想的斯格明子赛道型存储器相结合的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验