Suppr超能文献

线粒体能量转导中的NAD(H):对健康与疾病的影响

NAD(H) in mitochondrial energy transduction: implications for health and disease.

作者信息

Walker Matthew A, Tian Rong

机构信息

Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.

出版信息

Curr Opin Physiol. 2018 Jun;3:101-109. doi: 10.1016/j.cophys.2018.03.011. Epub 2018 Apr 11.

Abstract

Mitochondria are intracellular organelles that oxidize nutrients, make ATP, and fuel eukaryotic life. Their energy providing function is directly dependent on enzymes and coenzymes contained within the organelle. Perhaps, the most important coenzymes for energy yielding reactions are the pyridine nucleotides NAD(H) and NADP(H). Both aerobic and anaerobic metabolism rely on the electron carrying properties of pyridine nucleotides to regulate energy production. The intracellular NAD/NADH ratio controls the rate of ATP synthesis by regulating flux through NAD(H)-linked dehydrogenases and by activating NAD dependent enzymes that post-translationally modify proteins. Thus, mitochondrial energy transduction pathways can be substantially mediated by NAD; as an electron carrier exerting control over dehydrogenase enzymes or by activating enzymes that affect protein modification. The importance of this is highlighted in the explosion of recent studies linking impaired NAD metabolism to human health and disease. Most notably, studies linking changes in NAD availability or altered NAD/NADH ratio to derangements in metabolic and cellular energy transduction processes. In this review, we focus on the most recent investigative efforts to identify the role NAD plays in modulating mitochondrial function and also summarize the current knowledge describing the therapeutic application of elevating NAD levels pharmacologic and genetic approaches to treat human disease.

摘要

线粒体是细胞内的细胞器,可氧化营养物质、生成三磷酸腺苷(ATP)并为真核生物的生命活动提供能量。它们的能量供应功能直接依赖于该细胞器内所含的酶和辅酶。或许,对于能量产生反应而言,最重要的辅酶是吡啶核苷酸烟酰胺腺嘌呤二核苷酸(NAD(H))和烟酰胺腺嘌呤二核苷酸磷酸(NADP(H))。有氧代谢和无氧代谢均依赖吡啶核苷酸的电子携带特性来调节能量生成。细胞内烟酰胺腺嘌呤二核苷酸(NAD)与还原型烟酰胺腺嘌呤二核苷酸(NADH)的比例通过调节经由与NAD(H)相关的脱氢酶的通量以及激活对蛋白质进行翻译后修饰的NAD依赖性酶,来控制ATP的合成速率。因此,线粒体能量转导途径可在很大程度上由NAD介导;NAD作为一种电子载体,可对脱氢酶发挥控制作用,或通过激活影响蛋白质修饰的酶来实现。近期大量将NAD代谢受损与人类健康和疾病联系起来的研究凸显了这一点的重要性。最值得注意的是,将NAD可用性变化或NAD/NADH比例改变与代谢和细胞能量转导过程紊乱联系起来的研究。在本综述中,我们重点关注确定NAD在调节线粒体功能中所起作用的最新研究工作,并总结目前有关提高NAD水平的治疗应用的知识,即通过药理学和遗传学方法来治疗人类疾病。

相似文献

1
NAD(H) in mitochondrial energy transduction: implications for health and disease.
Curr Opin Physiol. 2018 Jun;3:101-109. doi: 10.1016/j.cophys.2018.03.011. Epub 2018 Apr 11.
2
Pyridine nucleotide regulation of cardiac intermediary metabolism.
Circ Res. 2012 Aug 17;111(5):628-41. doi: 10.1161/CIRCRESAHA.111.246371.
3
Regulation of cell survival and death by pyridine nucleotides.
Circ Res. 2012 Aug 17;111(5):611-27. doi: 10.1161/CIRCRESAHA.111.247932.
4
NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
Antioxid Redox Signal. 2018 Jan 20;28(3):251-272. doi: 10.1089/ars.2017.7216. Epub 2017 Jul 28.
5
The power to reduce: pyridine nucleotides--small molecules with a multitude of functions.
Biochem J. 2007 Mar 1;402(2):205-18. doi: 10.1042/BJ20061638.
6
Loss of NAD(H) from swollen yeast mitochondria.
BMC Biochem. 2006 Jan 24;7:3. doi: 10.1186/1471-2091-7-3.
7
Transhydrogenase and the anaerobic mitochondrial metabolism of adult Hymenolepis diminuta.
Parasitology. 2010 Mar;137(3):395-410. doi: 10.1017/S0031182009990904. Epub 2009 Sep 21.
9
Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders.
Clin Transl Med. 2016 Dec;5(1):25. doi: 10.1186/s40169-016-0104-7. Epub 2016 Jul 27.

引用本文的文献

2
The Heart Has Intrinsic Ketogenic Capacity that Mediates NAD Therapy in HFpEF.
Circ Res. 2025 May 9;136(10):1113-1130. doi: 10.1161/CIRCRESAHA.124.325550. Epub 2025 Apr 11.
3
Nicotinamide riboside supplementation ameliorates ovarian dysfunction in a PCOS mouse model.
J Ovarian Res. 2025 Jan 20;18(1):9. doi: 10.1186/s13048-025-01596-4.
4
Don´t give up on mitochondria as a target for the treatment of diabetes and its complications.
World J Diabetes. 2024 Oct 15;15(10):2015-2021. doi: 10.4239/wjd.v15.i10.2015.
5
Metabolite signaling in the heart.
Nat Cardiovasc Res. 2023 Jun;2(6):504-516. doi: 10.1038/s44161-023-00270-6. Epub 2023 May 25.
6
NAD metabolism and heart failure: Mechanisms and therapeutic potentials.
J Mol Cell Cardiol. 2024 Oct;195:45-54. doi: 10.1016/j.yjmcc.2024.07.008. Epub 2024 Aug 3.
8
Challenges of Spatially Resolved Metabolism in Cancer Research.
Metabolites. 2024 Jul 11;14(7):383. doi: 10.3390/metabo14070383.
9
Targeted Delivery of Geraniol via Hyaluronic Acid-Conjugation Enhances Its Anti-Tumor Activity Against Prostate Cancer.
Int J Nanomedicine. 2024 Jan 6;19:155-169. doi: 10.2147/IJN.S444815. eCollection 2024.
10
The Nutriepigenome.
Genes (Basel). 2023 Oct 25;14(11):1997. doi: 10.3390/genes14111997.

本文引用的文献

2
Sirtuin 5 is required for mouse survival in response to cardiac pressure overload.
J Biol Chem. 2017 Dec 1;292(48):19767-19781. doi: 10.1074/jbc.M117.809897. Epub 2017 Oct 2.
3
β-Hydroxybutyrate: A Signaling Metabolite.
Annu Rev Nutr. 2017 Aug 21;37:51-76. doi: 10.1146/annurev-nutr-071816-064916.
5
SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion.
Cell Metab. 2017 Apr 4;25(4):838-855.e15. doi: 10.1016/j.cmet.2017.03.003.
6
Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
Cell. 2016 Nov 3;167(4):985-1000.e21. doi: 10.1016/j.cell.2016.10.016. Epub 2016 Oct 27.
7
Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.
Nat Commun. 2016 Oct 10;7:12948. doi: 10.1038/ncomms12948.
8
Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.
Cell Metab. 2016 Aug 9;24(2):269-82. doi: 10.1016/j.cmet.2016.07.005.
9
NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.
Cell Rep. 2016 Aug 16;16(7):1851-60. doi: 10.1016/j.celrep.2016.07.027. Epub 2016 Aug 4.
10
Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.
Circulation. 2016 Sep 20;134(12):883-94. doi: 10.1161/CIRCULATIONAHA.116.022495. Epub 2016 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验