Walker Matthew A, Tian Rong
Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
Curr Opin Physiol. 2018 Jun;3:101-109. doi: 10.1016/j.cophys.2018.03.011. Epub 2018 Apr 11.
Mitochondria are intracellular organelles that oxidize nutrients, make ATP, and fuel eukaryotic life. Their energy providing function is directly dependent on enzymes and coenzymes contained within the organelle. Perhaps, the most important coenzymes for energy yielding reactions are the pyridine nucleotides NAD(H) and NADP(H). Both aerobic and anaerobic metabolism rely on the electron carrying properties of pyridine nucleotides to regulate energy production. The intracellular NAD/NADH ratio controls the rate of ATP synthesis by regulating flux through NAD(H)-linked dehydrogenases and by activating NAD dependent enzymes that post-translationally modify proteins. Thus, mitochondrial energy transduction pathways can be substantially mediated by NAD; as an electron carrier exerting control over dehydrogenase enzymes or by activating enzymes that affect protein modification. The importance of this is highlighted in the explosion of recent studies linking impaired NAD metabolism to human health and disease. Most notably, studies linking changes in NAD availability or altered NAD/NADH ratio to derangements in metabolic and cellular energy transduction processes. In this review, we focus on the most recent investigative efforts to identify the role NAD plays in modulating mitochondrial function and also summarize the current knowledge describing the therapeutic application of elevating NAD levels pharmacologic and genetic approaches to treat human disease.
线粒体是细胞内的细胞器,可氧化营养物质、生成三磷酸腺苷(ATP)并为真核生物的生命活动提供能量。它们的能量供应功能直接依赖于该细胞器内所含的酶和辅酶。或许,对于能量产生反应而言,最重要的辅酶是吡啶核苷酸烟酰胺腺嘌呤二核苷酸(NAD(H))和烟酰胺腺嘌呤二核苷酸磷酸(NADP(H))。有氧代谢和无氧代谢均依赖吡啶核苷酸的电子携带特性来调节能量生成。细胞内烟酰胺腺嘌呤二核苷酸(NAD)与还原型烟酰胺腺嘌呤二核苷酸(NADH)的比例通过调节经由与NAD(H)相关的脱氢酶的通量以及激活对蛋白质进行翻译后修饰的NAD依赖性酶,来控制ATP的合成速率。因此,线粒体能量转导途径可在很大程度上由NAD介导;NAD作为一种电子载体,可对脱氢酶发挥控制作用,或通过激活影响蛋白质修饰的酶来实现。近期大量将NAD代谢受损与人类健康和疾病联系起来的研究凸显了这一点的重要性。最值得注意的是,将NAD可用性变化或NAD/NADH比例改变与代谢和细胞能量转导过程紊乱联系起来的研究。在本综述中,我们重点关注确定NAD在调节线粒体功能中所起作用的最新研究工作,并总结目前有关提高NAD水平的治疗应用的知识,即通过药理学和遗传学方法来治疗人类疾病。