Sakai Ryuya, Murakami Kota, Mizutani Yuta, Tanaka Yuta, Hayashi Sasuga, Ishikawa Atsushi, Higo Takuma, Ogo Shuhei, Tsuneki Hideaki, Nakai Hiromi, Sekine Yasushi
Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
ACS Omega. 2020 Mar 17;5(12):6846-6851. doi: 10.1021/acsomega.0c00170. eCollection 2020 Mar 31.
Fe-supported heterogeneous catalysts are used for various reactions, including ammonia synthesis, Fischer-Tropsch synthesis, and exhaust gas cleaning. For the practical use of Fe-supported catalysts, suppression of Fe particle agglomeration is the most important issue to be resolved. As described herein, we found that Al doping in an oxide support suppresses agglomeration of the supported Fe particle. Experimental and computational studies revealed two tradeoff Al doping effects: the Fe particle size decreased and remained without agglomeration by virtue of the anchoring effect of doped Al. Also, some Fe atoms anchored by Al cannot function as an active site because of bonding with oxygen atoms. Using an appropriate amount of Al doping is effective for increasing the number of active Fe sites and catalytic activity. This optimized catalyst showed high practical activity and stability for low-temperature ammonia synthesis in an electric field. The optimized catalyst of 12.5 wt % Fe/CeAlZrO showed the highest ammonia synthesis rate (2.3 mmol g h) achieved to date under mild conditions (464 K, 0.9 MPa) in an electric field among the Fe catalysts reported.
铁负载型多相催化剂用于各种反应,包括氨合成、费托合成和废气净化。对于铁负载型催化剂的实际应用,抑制铁颗粒团聚是需要解决的最重要问题。如本文所述,我们发现氧化物载体中的铝掺杂可抑制负载的铁颗粒团聚。实验和计算研究揭示了两种相互权衡的铝掺杂效应:由于掺杂铝的锚固作用,铁颗粒尺寸减小并保持不团聚。此外,一些被铝锚固的铁原子由于与氧原子键合而不能作为活性位点发挥作用。使用适量的铝掺杂对于增加活性铁位点的数量和催化活性是有效的。这种优化后的催化剂在电场中对低温氨合成表现出高实际活性和稳定性。在报道的铁催化剂中,12.5 wt% Fe/CeAlZrO的优化催化剂在温和条件(464 K,0.9 MPa)下于电场中实现了迄今为止最高的氨合成速率(2.3 mmol g⁻¹ h⁻¹)。