Suppr超能文献

基于 RNA 的核结构域和基因组的凝聚组织。

Nuclear hubs built on RNAs and clustered organization of the genome.

机构信息

Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA.

Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA.

出版信息

Curr Opin Cell Biol. 2020 Jun;64:67-76. doi: 10.1016/j.ceb.2020.02.015. Epub 2020 Apr 4.

Abstract

RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the 'karyotype to hub' hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.

摘要

RNAs 在亚核区室的形成和功能中发挥着多样化的作用,其中大多数与活性基因相关。NEAT1 和 NEAT2/MALAT1 是众所周知的在核体中发挥作用的长非编码 RNA(lncRNA)的范例;然而,我们认为 RNA 生物发生本身可能是许多核区室化的基础。最近的研究表明,活性基因在全基因组范围内与核斑点聚集在一起,这大大推进了早期细胞学证据,表明斑点(又名 SC-35 结构域)是浓缩前体 RNA 代谢的中心。我们提出“核型到中心”假说来解释这种组织:人类核型中基因的聚类可能是为了促进有效的核中心的形成而进化的,部分原因是核糖核蛋白(RNP)形成大规模凝聚物的倾向。高度重复的 RNA 对结构产生影响的特殊能力,突出体现在最近的发现中,即人类卫星 II RNA 将因子隔离到疾病中的异常核体中,可能利用了正常的发育机制。

相似文献

1
Nuclear hubs built on RNAs and clustered organization of the genome.基于 RNA 的核结构域和基因组的凝聚组织。
Curr Opin Cell Biol. 2020 Jun;64:67-76. doi: 10.1016/j.ceb.2020.02.015. Epub 2020 Apr 4.
4
Long non-coding RNAs in nuclear bodies.核小体中的长非编码 RNA
Dev Growth Differ. 2012 Jan;54(1):44-54. doi: 10.1111/j.1440-169X.2011.01303.x. Epub 2011 Nov 10.
5
Biogenesis and function of nuclear bodies.核体的发生和功能。
Trends Genet. 2011 Aug;27(8):295-306. doi: 10.1016/j.tig.2011.05.006. Epub 2011 Jun 15.
6
Nuclear speckles: a model for nuclear organelles.核斑点:一种核细胞器模型。
Nat Rev Mol Cell Biol. 2003 Aug;4(8):605-12. doi: 10.1038/nrm1172.
8
RNA promotes the formation of spatial compartments in the nucleus.RNA 促进核内空间隔的形成。
Cell. 2021 Nov 11;184(23):5775-5790.e30. doi: 10.1016/j.cell.2021.10.014. Epub 2021 Nov 4.
10
Neuronal activation affects the organization and protein composition of the nuclear speckles.神经元激活会影响核斑点的结构和蛋白质组成。
Biochim Biophys Acta Mol Cell Res. 2024 Dec;1871(8):119829. doi: 10.1016/j.bbamcr.2024.119829. Epub 2024 Aug 26.

引用本文的文献

2
Basic Epigenetic Mechanisms.基本表观遗传机制
Subcell Biochem. 2025;108:1-49. doi: 10.1007/978-3-031-75980-2_1.
6
Mathematical model of structural changes in nuclear speckle.核斑点结构变化的数学模型
Biophys Physicobiol. 2023 Apr 27;20(2):e200020. doi: 10.2142/biophysico.bppb-v20.0020. eCollection 2023.

本文引用的文献

5
Genome organization around nuclear speckles.核斑点周围的基因组组织。
Curr Opin Genet Dev. 2019 Apr;55:91-99. doi: 10.1016/j.gde.2019.06.008. Epub 2019 Aug 5.
8
Constitutive splicing and economies of scale in gene expression.组成性剪接与基因表达的规模经济
Nat Struct Mol Biol. 2019 Jun;26(6):424-432. doi: 10.1038/s41594-019-0226-x. Epub 2019 May 27.
10
MALAT1 long non-coding RNA and breast cancer.MALAT1 长链非编码 RNA 与乳腺癌。
RNA Biol. 2019 Jun;16(6):860-863. doi: 10.1080/15476286.2019.1592072. Epub 2019 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验