Suppr超能文献

用于制造近红外光电化学传感器的缺陷工程化二氧化钛纳米管光子晶体

Defect-engineered TiO nanotube photonic crystals for the fabrication of near-infrared photoelectrochemical sensor.

作者信息

Wu Wenlong, Zhang Zhonghai

机构信息

School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 20024, China.

出版信息

J Mater Chem B. 2017 Jul 7;5(25):4883-4889. doi: 10.1039/c7tb01081h. Epub 2017 May 30.

Abstract

The use of photoelectrochemical (PEC) sensors, with their outstanding advantages of remarkable sensitivity, inherent miniaturization, portability and easy integration, is becoming a promising analytical detection technique. The rational design of PEC materials and convenient establishment of PEC analysis platforms have given this technique tremendous popularity in both analytical and medical communities for biomolecule detection. However, most of the current efforts in the development of PEC analysis have been made with ultraviolet and visible light (UV-vis) as light source, which are detrimental to biomolecules because of their high energy. On the contrary, near-infrared (NIR) light is biocompatible and is available for in vivo detection. Herein, a prototype of NIR light-responsive PEC analysis platform is first proposed with defect-engineered TiO nanotube photonic crystals as photoelectrode and dopamine as target molecule. The coupled strategies of defect engineering for electronic structure modification and morphology design for photon manipulation open up a distinctive avenue to not only implement sensitive NIR PEC detection of dopamine but also have potential multi-target detection ability by integrating bio-recognition units, thus promoting NIR PEC analysis as a versatile analysis method.

摘要

光电化学(PEC)传感器具有灵敏度高、固有小型化、便携性和易于集成等突出优点,正成为一种很有前途的分析检测技术。PEC材料的合理设计以及PEC分析平台的便捷建立,使该技术在分析和医学领域的生物分子检测中广受欢迎。然而,目前PEC分析开发的大部分工作都以紫外光和可见光(UV-vis)作为光源,由于其能量高,对生物分子有害。相反,近红外(NIR)光具有生物相容性,可用于体内检测。在此,首次提出了一种以缺陷工程化的TiO纳米管光子晶体为光电极、多巴胺为目标分子的近红外光响应PEC分析平台原型。通过电子结构修饰的缺陷工程和光子操纵的形貌设计相结合的策略,不仅为实现多巴胺的灵敏近红外PEC检测开辟了一条独特的途径,而且通过整合生物识别单元具有潜在的多目标检测能力,从而推动近红外PEC分析成为一种通用的分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验