Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
Hongzhiwei Technology (Shanghai) Co., Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai, China.
Nat Commun. 2024 Oct 12;15(1):8827. doi: 10.1038/s41467-024-53154-z.
Continuous and long-term therapeutic monitoring of medicine molecules in biological systems will revolutionize healthcare by offering personalized pharmacokinetic reports. However, the extremely complex biological environment brings great challenges for in vivo molecule detection in living organisms. Here we introduce an in vivo photoelectrochemical biosensor following a reverse design strategy with single atoms as molecular recognition units. Atomic dispersion of Cu single atoms on TiO substrate create synergistic anchoring triple-site for efficiently and selectively capturing of dual-carbonyl group and neighboring dual-hydroxyl group of tetracycline molecules. The photoelectrode is encapsulated with antibiofouling layer and implanted into the vein of living mouse to enable long-term in vivo monitoring of tetracycline in real biological environments. It is important to note that our approach was exclusively tested in male mice, and therefore, the findings may not be generalizable to female mice or other species without further research. The rationally designed biological-components-free in vivo biosensor with excellent selectivity, robustness, and stability endows possibility for enabling personalized medicine guidance through real-time feedbacking information and providing direct and authentic medicine molecular analysis.
通过提供个性化的药代动力学报告,生物系统中药物分子的连续和长期治疗监测将彻底改变医疗保健。然而,极其复杂的生物环境给活生物体中的体内分子检测带来了巨大的挑战。在这里,我们介绍了一种基于反向设计策略的活体光电化学生物传感器,其中单原子作为分子识别单元。Cu 单原子在 TiO2 衬底上的原子分散形成协同锚固的三配位位点,可高效且选择性地捕获四环素分子的双羰基和相邻的双羟基。光电极用抗生物污染层封装,并植入活鼠的静脉中,以在真实的生物环境中实现四环素的长期体内监测。需要注意的是,我们的方法仅在雄性小鼠中进行了测试,因此,在没有进一步研究的情况下,这些发现可能不适用于雌性小鼠或其他物种。这种具有优异选择性、鲁棒性和稳定性的合理设计的无生物组分活体生物传感器,为通过实时反馈信息和提供直接、真实的药物分子分析来实现个性化药物指导提供了可能性。