Suppr超能文献

基于未成熟血小板分数的免疫性血小板减少症诊断预测评分模型。

Immature platelet fraction based diagnostic predictive scoring model for immune thrombocytopenia.

机构信息

Division of Hematology-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea.

Division of Hematology-Oncology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea.

出版信息

Korean J Intern Med. 2020 Jul;35(4):970-978. doi: 10.3904/kjim.2019.093. Epub 2020 Apr 10.

Abstract

BACKGROUND/AIMS: The diagnosis of immune thrombocytopenia (ITP) is based on clinical manifestations and there is no gold standard. Thus, even hematologic malignancy is sometimes misdiagnosed as ITP and adequate treatment is delayed. Therefore, novel diagnostic parameters are needed to distinguish ITP from other causes of thrombocytopenia. Immature platelet fraction (IPF) has been proposed as one of new parameters. In this study, we assessed the usefulness of IPF and developed a diagnostic predictive scoring model for ITP.

METHODS

We retrospectively studied 568 patients with thrombocytopenia. Blood samples were collected and IPF quantified using a fully-automated hematology analyzer. We also estimated other variables that could affect thrombocytopenia by logistic regression analysis.

RESULTS

The median IPF was significantly higher in the ITP group than in the non-ITP group (8.7% vs. 5.1%). The optimal cut-off value of IPF for differentiating ITP was 7.0%. We evaluated other laboratory variables via logistic regression analysis. IPF, hemoglobin, lactate dehydrogenase (LDH), and ferritin were statistically significant and comprised a diagnostic predictive scoring model. Our model gave points to each of variables: 1 to high hemoglobin (> 12 g/dL), low ferritin (≤ 177 ng/ mL), normal LDH (≤ upper limit of normal) and IPF ≥ 7 and < 10, 2 to IPF ≥ 10. The final score was obtained by summing the points. We defined that ITP could be predicted in patients with more than 3 points.

CONCLUSION

IPF could be a useful parameter to distinguish ITP from other causes of thrombocytopenia. We developed the predictive scoring model. This model could predict ITP with high probability.

摘要

背景/目的:免疫性血小板减少症(ITP)的诊断基于临床表现,目前尚无金标准。因此,有时甚至会将血液恶性肿瘤误诊为 ITP,从而延误了适当的治疗。因此,需要新的诊断参数来区分 ITP 和其他引起血小板减少症的原因。未成熟血小板分数(IPF)已被提出作为新的参数之一。在本研究中,我们评估了 IPF 的有用性,并开发了一种用于诊断 ITP 的预测评分模型。

方法

我们回顾性研究了 568 例血小板减少症患者。采集血样并使用全自动血液分析仪定量 IPF。我们还通过逻辑回归分析估计了可能影响血小板减少症的其他变量。

结果

ITP 组的中位 IPF 明显高于非 ITP 组(8.7% vs. 5.1%)。区分 ITP 的最佳 IPF 截断值为 7.0%。我们通过逻辑回归分析评估了其他实验室变量。IPF、血红蛋白、乳酸脱氢酶(LDH)和铁蛋白具有统计学意义,构成了诊断预测评分模型。我们的模型为每个变量赋予了分数:1 分表示血红蛋白较高(> 12 g/dL)、铁蛋白较低(≤ 177 ng/mL)、LDH 正常(≤正常值上限)和 IPF≥7 且<10,2 分表示 IPF≥10。最终得分通过将分数相加得出。我们定义,患者得分超过 3 分可预测为 ITP。

结论

IPF 可作为区分 ITP 和其他血小板减少症原因的有用参数。我们开发了预测评分模型。该模型可以高度预测 ITP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3c3/7373978/f1a620db994d/kjim-2019-093f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验