Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
J Mol Biol. 2019 Mar 1;431(5):981-995. doi: 10.1016/j.jmb.2019.01.008. Epub 2019 Jan 19.
Dietary fiber is an important food source for members of the human gut microbiome. Members of the dominant Bacteroidetes phylum capture diverse polysaccharides via the action of multiple cell surface proteins encoded within polysaccharide utilization loci (PUL). The independent activities of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) for the harvest of various glycans have been studied in detail, but how these proteins work together to coordinate uptake is poorly understood. Here, we combine genetic and biochemical approaches to discern the interplay between the BoGH9 endoglucanase and the xyloglucan-binding proteins SGBP-A and SGBP-B from the Bacteroides ovatus xyloglucan utilization locus (XyGUL). The expression of BoGH9, a weakly active xyloglucanase in isolation, is required in a strain that expresses a non-binding version of SGBP-A (SGBP-A*). The crystal structure of the BoGH9 enzyme suggests the molecular basis for its robust activity on mixed-linkage β-glucan compared to xyloglucan. However, catalytically inactive site-directed mutants of BoGH9 fail to complement the deletion of the active BoGH9 in a SGBP-A* strain. We also find that SGBP-B is needed in an SGBP-A* background to support growth on xyloglucan, but that the non-binding SGBP-B* protein acts in a dominant negative manner to inhibit growth on xyloglucan. We postulate a model whereby the SGBP-A, SGBP-B, and BoGH9 work together at the cell surface, likely within a discrete complex, and that xyloglucan binding by SGBP-B and BoGH9 may facilitate the orientation of the xyloglucan for transfer across the outer membrane.
膳食纤维是人类肠道微生物群成员的重要食物来源。厚壁菌门的成员通过多糖利用基因座(PUL)内编码的多种细胞表面蛋白捕获各种多糖。已经详细研究了 PUL 编码糖苷水解酶(GHs)和表面糖结合蛋白(SGBP)对各种糖的独立活性,但是这些蛋白质如何协同作用以协调摄取仍知之甚少。在这里,我们结合遗传和生化方法来辨别卵形拟杆菌木聚糖利用基因座(XyGUL)中的 BoGH9 内切葡聚糖酶与木葡聚糖结合蛋白 SGBP-A 和 SGBP-B 之间的相互作用。BoGH9 的表达是必需的,BoGH9 是一种在分离时活性较弱的木葡聚糖酶,而在表达非结合版本 SGBP-A(SGBP-A*)的菌株中也是必需的。BoGH9 酶的晶体结构表明了其在混合链接β-葡聚糖上与木葡聚糖相比具有强大活性的分子基础。然而,催化失活的 BoGH9 点突变体无法在 SGBP-A菌株中补充活性 BoGH9 的缺失。我们还发现,在 SGBP-A背景下需要 SGBP-B 来支持木葡聚糖的生长,但是非结合的 SGBP-B*蛋白以显性负性方式抑制木葡聚糖的生长。我们推测了一种模型,即 SGBP-A、SGBP-B 和 BoGH9 一起在细胞表面起作用,可能在一个离散的复合物中,并且 SGBP-B 和 BoGH9 对木葡聚糖的结合可能有助于木葡聚糖的取向,以便跨外膜转移。