Suppr超能文献

火鸡惯性测量单元数据中的自动步数检测

Automated Step Detection in Inertial Measurement Unit Data From Turkeys.

作者信息

Bouwman Aniek, Savchuk Anatolii, Abbaspourghomi Abouzar, Visser Bram

机构信息

Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands.

Jheronimus Academy of Data Science (JADS), 's-Hertogenbosch, Netherlands.

出版信息

Front Genet. 2020 Mar 19;11:207. doi: 10.3389/fgene.2020.00207. eCollection 2020.

Abstract

Locomotion is an important welfare and health trait in turkey production. Current breeding values for locomotion are often based on subjective scoring. Sensor technologies could be applied to obtain objective evaluation of turkey gait. Inertial measurement units (IMUs) measure acceleration and rotational velocity, which makes them attractive devices for gait analysis. The aim of this study was to compare three different methods for step detection from IMU data from turkeys. This is an essential step for future feature extraction for the evaluation of turkey locomotion. Data from turkeys walking through a corridor with IMUs attached to each upper leg were annotated manually. We evaluated change point detection, local extrema approach, and gradient boosting machine in terms of step detection and precision of start and end point of the steps. All three methods were successful in step detection, but local extrema approach showed more false detections. In terms of precision of start and end point of steps, change point detection performed poorly due to significant irregular delay, while gradient boosting machine was most precise. For the allowed distance to the annotated steps of 0.2 s, the precision of gradient boosting machine was 0.81 and the recall was 0.84, which is much better in comparison to the other two methods (<0.61). At an allowed distance of 1 s, performance of the three models was similar. Gradient boosting machine was identified as the most accurate for signal segmentation with a final goal to extract information about turkey gait; however, it requires an annotated training dataset.

摘要

在火鸡生产中,运动能力是一项重要的福利和健康特征。目前,运动能力的育种值通常基于主观评分。传感器技术可用于对火鸡步态进行客观评估。惯性测量单元(IMU)可测量加速度和旋转速度,这使其成为步态分析的理想设备。本研究的目的是比较从火鸡的IMU数据中检测步幅的三种不同方法。这是未来提取用于评估火鸡运动能力特征的关键一步。对火鸡在走廊中行走的数据进行了人工标注,每只火鸡的大腿上部都附着了IMU。我们从步幅检测以及步幅起点和终点的精度方面评估了变化点检测、局部极值法和梯度提升机。所有三种方法在步幅检测方面都取得了成功,但局部极值法的误检测较多。在步幅起点和终点的精度方面,由于存在明显的不规则延迟,变化点检测表现不佳,而梯度提升机最为精确。对于与标注步幅允许的0.2秒距离,梯度提升机的精度为0.81,召回率为0.84,与其他两种方法相比要好得多(<0.61)。在允许距离为1秒时,三种模型的性能相似。梯度提升机被认为是信号分割最准确的方法,最终目标是提取有关火鸡步态的信息;然而,它需要一个标注的训练数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e935/7096551/c39d90da79de/fgene-11-00207-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验