Suppr超能文献

用于增强间充质干细胞分化的生物模拟剪切应力环境

Bio-mimicking Shear Stress Environments for Enhancing Mesenchymal Stem Cell Differentiation.

作者信息

Arora Seep, Srinivasan Akshaya, Leung Chak Ming, Toh Yi-Chin

机构信息

Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore.

出版信息

Curr Stem Cell Res Ther. 2020;15(5):414-427. doi: 10.2174/1574888X15666200408113630.

Abstract

Mesenchymal stem cells (MSCs) are multipotent stromal cells, with the ability to differentiate into mesodermal (e.g., adipocyte, chondrocyte, hematopoietic, myocyte, osteoblast), ectodermal (e.g., epithelial, neural) and endodermal (e.g., hepatocyte, islet cell) lineages based on the type of induction cues provided. As compared to embryonic stem cells, MSCs hold a multitude of advantages from a clinical translation perspective, including ease of isolation, low immunogenicity and limited ethical concerns. Therefore, MSCs are a promising stem cell source for different regenerative medicine applications. The in vitro differentiation of MSCs into different lineages relies on effective mimicking of the in vivo milieu, including both biochemical and mechanical stimuli. As compared to other biophysical cues, such as substrate stiffness and topography, the role of fluid shear stress (SS) in regulating MSC differentiation has been investigated to a lesser extent although the role of interstitial fluid and vascular flow in regulating the normal physiology of bone, muscle and cardiovascular tissues is well-known. This review aims to summarise the current state-of-the-art regarding the role of SS in the differentiation of MSCs into osteogenic, cardiovascular, chondrogenic, adipogenic and neurogenic lineages. We will also highlight and discuss the potential of employing SS to augment the differentiation of MSCs to other lineages, where SS is known to play a role physiologically but has not yet been successfully harnessed for in vitro differentiation, including liver, kidney and corneal tissue lineage cells. The incorporation of SS, in combination with biochemical and biophysical cues during MSC differentiation, may provide a promising avenue to improve the functionality of the differentiated cells by more closely mimicking the in vivo milieu.

摘要

间充质干细胞(MSCs)是多能基质细胞,根据所提供的诱导信号类型,具有分化为中胚层(如脂肪细胞、软骨细胞、造血细胞、肌细胞、成骨细胞)、外胚层(如上皮细胞、神经细胞)和内胚层(如肝细胞、胰岛细胞)谱系的能力。与胚胎干细胞相比,从临床转化的角度来看,间充质干细胞具有诸多优势,包括易于分离、低免疫原性以及有限的伦理问题。因此,间充质干细胞是不同再生医学应用中一种很有前景的干细胞来源。间充质干细胞在体外分化为不同谱系依赖于对体内环境的有效模拟,包括生化和机械刺激。与其他生物物理线索(如底物硬度和拓扑结构)相比,尽管组织液和血管流动在调节骨骼、肌肉和心血管组织的正常生理过程中的作用已广为人知,但流体剪切应力(SS)在调节间充质干细胞分化方面的作用研究较少。本综述旨在总结关于流体剪切应力在间充质干细胞向成骨、心血管、软骨、脂肪和神经谱系分化中作用的当前最新研究状况。我们还将强调并讨论利用流体剪切应力增强间充质干细胞向其他谱系分化的潜力,在这些谱系中,流体剪切应力在生理上已知起作用,但尚未成功用于体外分化,包括肝、肾和角膜组织谱系细胞。在间充质干细胞分化过程中结合流体剪切应力以及生化和生物物理线索,可能为通过更紧密地模拟体内环境来改善分化细胞的功能提供一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验