Diefenbach Maximilian N, Liu Chunlei, Karampinos Dimitrios C
Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany.
Department of Electrical Engineering and Computer Sciences & Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
Quant Imaging Med Surg. 2020 Mar;10(3):554-567. doi: 10.21037/qims.2020.02.07.
To develop a generalized formulation for multi-echo gradient-echo-based chemical species separation for all MR signal models described by a weighted sum of complex exponentials with phases linear in the echo time. Constraints between estimation parameters in the signal model were abstracted into a matrix formulation of a generic parameter gradient. The signal model gradient was used in a parameter estimation algorithm and the Fisher information matrix. The general formulation was tested in numerical simulations and against literature and results. The proposed gradient-based parameter estimation and experimental design framework is universally applicable over the whole class of signal models using the matrix abstraction of the signal model-specific parameter constraints as input. Several previous results in magnetic-field mapping and water-fat imaging with different models could successfully be replicated with the same framework and only different input matrices. A framework for generalized parameter estimation in multi-echo gradient-echo MR signal models of multiple chemical species was developed and validated and its software version is freely available online.
针对由回波时间呈线性相位的复指数加权和描述的所有磁共振信号模型,开发一种基于多回波梯度回波的化学物质分离通用公式。信号模型中估计参数之间的约束被抽象为通用参数梯度的矩阵公式。信号模型梯度用于参数估计算法和费舍尔信息矩阵。该通用公式在数值模拟中进行了测试,并与文献和结果进行了对比。所提出的基于梯度的参数估计和实验设计框架通过将特定信号模型参数约束的矩阵抽象作为输入,在整个信号模型类别中普遍适用。利用相同框架且仅使用不同输入矩阵,先前在磁场映射和不同模型的水脂成像中的几个结果能够成功复现。开发并验证了一种用于多种化学物质的多回波梯度回波磁共振信号模型的通用参数估计框架,其软件版本可在网上免费获取。