Suppr超能文献

基于多回波梯度回波的化学物质分离中的广义参数估计

Generalized parameter estimation in multi-echo gradient-echo-based chemical species separation.

作者信息

Diefenbach Maximilian N, Liu Chunlei, Karampinos Dimitrios C

机构信息

Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany.

Department of Electrical Engineering and Computer Sciences & Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.

出版信息

Quant Imaging Med Surg. 2020 Mar;10(3):554-567. doi: 10.21037/qims.2020.02.07.

Abstract

To develop a generalized formulation for multi-echo gradient-echo-based chemical species separation for all MR signal models described by a weighted sum of complex exponentials with phases linear in the echo time. Constraints between estimation parameters in the signal model were abstracted into a matrix formulation of a generic parameter gradient. The signal model gradient was used in a parameter estimation algorithm and the Fisher information matrix. The general formulation was tested in numerical simulations and against literature and results. The proposed gradient-based parameter estimation and experimental design framework is universally applicable over the whole class of signal models using the matrix abstraction of the signal model-specific parameter constraints as input. Several previous results in magnetic-field mapping and water-fat imaging with different models could successfully be replicated with the same framework and only different input matrices. A framework for generalized parameter estimation in multi-echo gradient-echo MR signal models of multiple chemical species was developed and validated and its software version is freely available online.

摘要

针对由回波时间呈线性相位的复指数加权和描述的所有磁共振信号模型,开发一种基于多回波梯度回波的化学物质分离通用公式。信号模型中估计参数之间的约束被抽象为通用参数梯度的矩阵公式。信号模型梯度用于参数估计算法和费舍尔信息矩阵。该通用公式在数值模拟中进行了测试,并与文献和结果进行了对比。所提出的基于梯度的参数估计和实验设计框架通过将特定信号模型参数约束的矩阵抽象作为输入,在整个信号模型类别中普遍适用。利用相同框架且仅使用不同输入矩阵,先前在磁场映射和不同模型的水脂成像中的几个结果能够成功复现。开发并验证了一种用于多种化学物质的多回波梯度回波磁共振信号模型的通用参数估计框架,其软件版本可在网上免费获取。

相似文献

1
Generalized parameter estimation in multi-echo gradient-echo-based chemical species separation.
Quant Imaging Med Surg. 2020 Mar;10(3):554-567. doi: 10.21037/qims.2020.02.07.
2
A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI.
Magn Reson Med. 2018 Apr;79(4):2183-2189. doi: 10.1002/mrm.26874. Epub 2017 Aug 22.
3
Accurate fatty acid composition estimation of adipose tissue in the abdomen based on bipolar multi-echo MRI.
Magn Reson Med. 2019 Apr;81(4):2330-2346. doi: 10.1002/mrm.27557. Epub 2018 Oct 28.
4
Fisher information and Cramér-Rao lower bound for experimental design in parallel imaging.
Magn Reson Med. 2018 Jun;79(6):3249-3255. doi: 10.1002/mrm.26984. Epub 2017 Nov 1.
5
Improved estimation of myelin water fractions with learned parameter distributions.
Magn Reson Med. 2021 Nov;86(5):2795-2809. doi: 10.1002/mrm.28889. Epub 2021 Jul 3.
7
Robust water-fat separation for multi-echo gradient-recalled echo sequence using convolutional neural network.
Magn Reson Med. 2019 Jul;82(1):476-484. doi: 10.1002/mrm.27697. Epub 2019 Feb 20.
8
Accelerated Parameter Mapping of Multiple-Echo Gradient-Echo Data Using Model-Based Iterative Reconstruction.
IEEE Trans Med Imaging. 2018 Feb;37(2):626-637. doi: 10.1109/TMI.2017.2771504.
9
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
J Magn Reson. 2017 Apr;277:117-130. doi: 10.1016/j.jmr.2017.02.017. Epub 2017 Feb 28.

引用本文的文献

2
Whole pancreas water T mapping at 3 Tesla.
MAGMA. 2025 Apr;38(2):271-283. doi: 10.1007/s10334-025-01224-8. Epub 2025 Mar 6.
5
Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection.
Front Endocrinol (Lausanne). 2020 Aug 7;11:421. doi: 10.3389/fendo.2020.00421. eCollection 2020.

本文引用的文献

2
Accurate fatty acid composition estimation of adipose tissue in the abdomen based on bipolar multi-echo MRI.
Magn Reson Med. 2019 Apr;81(4):2330-2346. doi: 10.1002/mrm.27557. Epub 2018 Oct 28.
3
A rapid 3D fat-water decomposition method using globally optimal surface estimation (R-GOOSE).
Magn Reson Med. 2018 Apr;79(4):2401-2407. doi: 10.1002/mrm.26843. Epub 2017 Jul 20.
5
Multi-scale graph-cut algorithm for efficient water-fat separation.
Magn Reson Med. 2017 Sep;78(3):941-949. doi: 10.1002/mrm.26479. Epub 2016 Oct 6.
6
Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker.
Magn Reson Med. 2015 Jan;73(1):82-101. doi: 10.1002/mrm.25358. Epub 2014 Jul 17.
7
MRI-based myelin water imaging: A technical review.
Magn Reson Med. 2015 Jan;73(1):70-81. doi: 10.1002/mrm.25198. Epub 2014 Mar 6.
8
Fat quantification using multiecho sequences with bipolar gradients: investigation of accuracy and noise performance.
Magn Reson Med. 2014 Jan;71(1):219-29. doi: 10.1002/mrm.24657. Epub 2013 Feb 14.
9
ISMRM workshop on fat-water separation: insights, applications and progress in MRI.
Magn Reson Med. 2012 Aug;68(2):378-88. doi: 10.1002/mrm.24369. Epub 2012 Jun 12.
10
Simultaneous quantification of fat content and fatty acid composition using MR imaging.
Magn Reson Med. 2013 Mar 1;69(3):688-97. doi: 10.1002/mrm.24297. Epub 2012 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验