Leonhardt Yannik, Gassert Florian T, Feuerriegel Georg, Gassert Felix G, Kronthaler Sophia, Boehm Christof, Kufner Alexander, Ruschke Stefan, Baum Thomas, Schwaiger Benedikt J, Makowski Marcus R, Karampinos Dimitrios C, Gersing Alexandra S
Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
Quant Imaging Med Surg. 2021 Aug;11(8):3715-3725. doi: 10.21037/qims-20-1373.
Chemical shift encoding-based water-fat separation techniques have been used for fat quantification [proton density fat fraction (PDFF)], but they also enable the assessment of bone marrow T2*, which has previously been reported to be a potential biomarker for osteoporosis and may give insight into the cause of vertebral fractures (i.e., osteoporotic traumatic) and the microstructure of the bone when applied to vertebral bone marrow.
The 32 patients (78.1% with low-energy osteopenic/osteoporotic fractures, mean age 72.3±9.8 years, 76% women; 21.9% with high-energy traumatic fractures, 47.3±12.8 years, no women) were frequency-matched for age and sex to subjects without vertebral fractures (n=20). All study patients underwent 3T-MRI of the lumbar spine including sagittally acquired spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* values were obtained. Volumetric trabecular bone mineral density (BMD) and trabecular bone parameters describing the three-dimensional structural integrity of trabecular bone were derived from quantitative CT. Associations between T2* measurements, fracture status and trabecular bone parameters were assessed using multivariable linear regression models.
Mean T2* values of non fractured vertebrae in all patients showed a significant correlation with BMD (r=-0.65, P<0.001), trabecular number (TbN) (r=-0.56, P<0.001) and trabecular spacing (TbSp) (r=0.61, P<0.001); patients with low-energy osteoporotic vertebral fractures showed significantly higher mean T2* values than those with traumatic fractures (13.6±4.3 8.4±2.2 ms, P=0.01) as well as a significantly lower TbN (0.69±0.08 0.93±0.03 mm-1, P<0.01) and a significantly larger trabecular spacing (1.06±0.16 0.56±0.08 mm, P<0.01). Mean T2* values of osteoporotic patients with and without vertebral fracture showed no significant difference (13.5±3.4 15.6±3.5 ms, P=0.40). When comparing the mean T2* of the fractured vertebrae, no significant difference could be detected between low-energy osteoporotic fractures and high-energy traumatic fractures (12.6±5.4 . 8.1±2.4 ms, P=0.10).
T2* mapping of vertebral bone marrow using using chemical shift encoding-based water-fat separation allows for assessing osteoporosis as well as the trabecular microstructure and enables a radiation-free differentiation between patients with low-energy osteoporotic and high-energy traumatic vertebral fractures, suggesting its potential as a biomarker for bone fragility.
基于化学位移编码的水脂分离技术已用于脂肪定量分析[质子密度脂肪分数(PDFF)],但它也能够评估骨髓T2*,此前有报道称其可能是骨质疏松症的生物标志物,应用于椎体骨髓时可能有助于深入了解椎体骨折的原因(即骨质疏松性/创伤性)以及骨骼的微观结构。
将32例患者(78.1%为低能量骨质疏松性/骨质疏松骨折,平均年龄72.3±9.8岁,76%为女性;21.9%为高能量创伤性骨折,47.3±12.8岁,无女性)按照年龄和性别与无椎体骨折的受试者(n = 20)进行频率匹配。所有研究患者均接受腰椎3T-MRI检查,包括矢状面采集的扰相梯度回波序列,用于基于化学位移编码的水脂分离,从中获取T2值。体积骨小梁骨密度(BMD)和描述骨小梁三维结构完整性的骨小梁参数来自定量CT。使用多变量线性回归模型评估T2测量值、骨折状态和骨小梁参数之间的关联。
所有患者未骨折椎体的平均T2值与BMD(r = -0.65,P < 0.001)、骨小梁数量(TbN)(r = -0.56,P < 0.001)和骨小梁间距(TbSp)(r = 0.61,P < 0.001)均呈显著相关;低能量骨质疏松性椎体骨折患者的平均T2值显著高于创伤性骨折患者(13.6±4.3对8.4±2.2 ms,P = 0.01),同时TbN显著更低(0.69±0.08对0.93±0.03 mm-1,P < 0.01),骨小梁间距显著更大(1.06±0.16对0.56±0.08 mm,P < 0.01)。有和无椎体骨折的骨质疏松患者的平均T2值无显著差异(13.5±3.4对15.6±3.5 ms,P = 0.40)。比较骨折椎体的平均T2时,低能量骨质疏松性骨折和高能量创伤性骨折之间未检测到显著差异(12.6±5.4对8.1±2.4 ms,P = 0.10)。
使用基于化学位移编码的水脂分离技术对椎体骨髓进行T2*成像,能够评估骨质疏松症以及骨小梁微观结构,并能够在低能量骨质疏松性和高能量创伤性椎体骨折患者之间进行无辐射鉴别,表明其作为骨脆性生物标志物的潜力。