Ambrosio G, Brown A, Daukiya L, Drera G, Di Santo G, Petaccia L, De Feyter S, Sangaletti L, Pagliara S
I-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia, Italy.
Nanoscale. 2020 Apr 30;12(16):9032-9037. doi: 10.1039/d0nr01186j.
Plenty of strategies focused on covalent interaction have been developed to functionalize graphene's surface in order to employ it in a wide range of applications. Among them, the use of radical species including nitrene, carbene and aryl diazonium salts is regarded as a promising strategy to establish the covalent functionalization of graphene. In this work, we highlight the effect of diazonium chemistry on the electronic properties of graphene on SiC. On the basis of X-ray and synchrotron-based photoemission experiments, we were able to prove that 3,4,5-trimethoxybenzenediazonium (TMeOD) units, reduced and chemisorbed onto graphene using electrochemistry, preserve the electronic structure of the Dirac cone, through inducing a slightly additional n-type doping of graphene, as revealed by a downshift of the Dirac cone probed by angle-resolved photoemission experiments.
为了将石墨烯应用于广泛的领域,人们已经开发了许多专注于共价相互作用的策略来对其表面进行功能化。其中,使用包括氮烯、卡宾和芳基重氮盐在内的自由基物种被认为是实现石墨烯共价功能化的一种有前景的策略。在这项工作中,我们强调了重氮化学对碳化硅上石墨烯电子性质的影响。基于X射线和同步辐射光电子能谱实验,我们能够证明,通过电化学方法还原并化学吸附在石墨烯上的3,4,5-三甲氧基苯重氮(TMeOD)单元,通过诱导石墨烯略微额外的n型掺杂,保留了狄拉克锥的电子结构,这一点通过角分辨光电子能谱实验探测到的狄拉克锥下移得以揭示。