Suppr超能文献

AirNet:用于稀疏数据CT的融合深度神经网络正则化的解析与迭代重建方法

AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.

作者信息

Chen Gaoyu, Hong Xiang, Ding Qiaoqiao, Zhang Yi, Chen Hu, Fu Shujun, Zhao Yunsong, Zhang Xiaoqun, Ji Hui, Wang Ge, Huang Qiu, Gao Hao

机构信息

Department of Nuclear Medicine, Rui Jin Hospital, School of Medcine, Shanghai Jiao Tong University, Shanghai, 200240, China.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Med Phys. 2020 Jul;47(7):2916-2930. doi: 10.1002/mp.14170. Epub 2020 Apr 30.

Abstract

PURPOSE

Sparse-data computed tomography (CT) frequently occurs, such as breast tomosynthesis, C-arm CT, on-board four-dimensional cone-beam CT (4D CBCT), and industrial CT. However, sparse-data image reconstruction remains challenging due to highly undersampled data. This work develops a data-driven image reconstruction method for sparse-data CT using deep neural networks (DNN).

METHODS

The new method so-called AirNet is designed to incorporate the benefits from analytical reconstruction method (AR), iterative reconstruction method (IR), and DNN. It is built upon fused analytical and iterative reconstruction (AIR) that synergizes AR and IR via the optimization framework of modified proximal forward-backward splitting (PFBS). By unrolling PFBS into IR updates of CT data fidelity and DNN regularization with residual learning, AirNet utilizes AR such as FBP during the data fidelity, introduces dense connectivity into DNN regularization, and learns PFBS coefficients and DNN parameters that minimize the loss function during the training stage; and then AirNet with trained parameters can be used for end-to-end image reconstruction.

RESULTS

A CT atlas of 100 prostate scans was used to validate the AirNet in comparison with state-of-art DNN-based postprocessing and image reconstruction methods. The validation loss in AirNet had the fastest decreasing rate, owing to inherited fast convergence from AIR. AirNet was robust to noise in projection data and content differences between the training set and the images to be reconstructed. The impact of image quality on radiotherapy treatment planning was evaluated for both photon and proton therapy, and AirNet achieved the best treatment plan quality, especially for proton therapy. For example, with limited-angle data, the maximal target dose for AirNet was 109.5% in comparison with the ground truth 109.1%, while it was significantly elevated to 115.1% and 128.1% for FBPConvNet and LEARN, respectively.

CONCLUSIONS

A new image reconstruction AirNet is developed for sparse-data CT image reconstruction. AirNet achieved the best image reconstruction quality both visually and quantitatively among all methods under comparison for all sparse-data scenarios (sparse-view and limited-angle), and provided the best photon and proton treatment plan quality based on sparse-data CT.

摘要

目的

稀疏数据计算机断层扫描(CT)经常出现,如乳腺断层合成、C形臂CT、机载四维锥形束CT(4D CBCT)以及工业CT。然而,由于数据严重欠采样,稀疏数据图像重建仍然具有挑战性。这项工作开发了一种使用深度神经网络(DNN)的稀疏数据CT数据驱动图像重建方法。

方法

新方法名为AirNet,旨在融合解析重建方法(AR)、迭代重建方法(IR)和DNN的优势。它基于融合解析与迭代重建(AIR)构建,通过改进的近端前向-后向分裂(PFBS)优化框架将AR和IR协同起来。通过将PFBS展开为CT数据保真度的IR更新以及带有残差学习的DNN正则化,AirNet在数据保真度期间利用诸如FBP之类的AR,在DNN正则化中引入密集连接,并在训练阶段学习使损失函数最小化的PFBS系数和DNN参数;然后,具有训练参数的AirNet可用于端到端图像重建。

结果

使用包含100例前列腺扫描的CT图谱,将AirNet与基于DNN的最新后处理和图像重建方法进行比较以验证其性能。由于继承了AIR的快速收敛性,AirNet中的验证损失下降速度最快。AirNet对投影数据中的噪声以及训练集与待重建图像之间的内容差异具有鲁棒性。针对光子和质子治疗评估了图像质量对放射治疗计划的影响,AirNet实现了最佳的治疗计划质量,尤其是对于质子治疗。例如,在有限角度数据下,与真实值109.1%相比,AirNet的最大靶区剂量为109.5%,而FBPConvNet和LEARN的该剂量分别显著升高至115.1%和128.1%。

结论

开发了一种用于稀疏数据CT图像重建的新图像重建方法AirNet。在所有稀疏数据场景(稀疏视图和有限角度)下的所有比较方法中,AirNet在视觉和定量方面均实现了最佳的图像重建质量,并基于稀疏数据CT提供了最佳的光子和质子治疗计划质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验