KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium.
KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium; KU Leuven, Research Group Experimental Oto-rhino-laryngology, O&N II, Herestraat 49, B-3001, Leuven, Belgium.
Biosens Bioelectron. 2020 Jun 15;158:112152. doi: 10.1016/j.bios.2020.112152. Epub 2020 Mar 20.
In this work, we report on the development of a catheter-based sensor designed for measuring the concentration of histamine in the human duodenum. Certain gut disorders, such as the irritable bowel syndrome (IBS), are associated with elevated levels of intestinal histamine due to chronic immune activation. As it is still impossible to determine histamine concentrations in vivo, a nasointestinal catheter with histamine-sensing capabilities has the potential to become a valuable diagnostic instrument. Regarding the sensing principle, we selected impedance spectroscopy using voltages that are compatible with intra-body applications with molecularly imprinted polymers (MIPs) as recognition elements. MIPs are synthetic receptors that offer the advantages of robustness, high specificity and selectivity for histamine as a target. In this specific case, the MIPs were synthesized from acryclic acid monomers, which guarantees a uniform binding capacity within the pH range of intestinal fluid. We have validated the catheter sensor on human intestinal liquids spiked with histamine in a testing setup that mimics the environment inside the duodenum. The dose-response curves show an analytical range between 5 and 200 nM of histamine, corresponding to physiologically normal conditions while higher concentrations correlate with disease. The key output signal of the sensor is the resistive component of the MIP-functionalized titanium electrodes as derived from the equivalent-circuit modelling of full-range impedance spectra. Future applications could be catheters tailored to cardiovascular, urological, gastrointestinal, and neurovascular applications. This, in combination with the versatility of the MIPs, will make this sensor platform a versatile diagnostic tool.
在这项工作中,我们报告了一种基于导管的传感器的开发,该传感器旨在测量人类十二指肠中组氨酸的浓度。某些肠道疾病,如肠易激综合征(IBS),由于慢性免疫激活而与肠道组胺水平升高有关。由于目前仍然不可能在体内确定组氨酸浓度,因此具有组胺感应能力的鼻肠导管有可能成为一种有价值的诊断工具。关于传感原理,我们选择了使用与体内应用兼容的电压的阻抗光谱,其中使用分子印迹聚合物(MIP)作为识别元件。MIP 是合成受体,具有作为靶标对组氨酸的稳健性、高特异性和选择性的优势。在这种特殊情况下,MIP 是由丙烯酰胺单体合成的,这保证了在肠液的 pH 范围内具有均匀的结合能力。我们已经在模拟十二指肠内环境的测试装置中对含有组氨酸的人肠液进行了导管传感器的验证。剂量反应曲线显示组氨酸的分析范围在 5 到 200 nM 之间,对应于生理正常条件,而更高的浓度与疾病相关。传感器的关键输出信号是源自全范围阻抗谱等效电路模型的 MIP 功能化钛电极的电阻分量。未来的应用可以是针对心血管、泌尿科、胃肠道和神经血管应用的定制化导管。这与 MIP 的多功能性相结合,将使这种传感器平台成为一种多功能的诊断工具。