Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
Inorg Chem. 2020 May 4;59(9):5918-5928. doi: 10.1021/acs.inorgchem.9b03676. Epub 2020 Apr 10.
A series of bioinspired copper(II) complexes of N-tripodal and sterically crowded diazepane-based ligands have been investigated as catalysts for functionalization of the aromatic C-H bond. The tripodal-ligand-based complexes exhibited distorted trigonal-bipyramidal (TBP) geometry (τ, 0.70) around the copper(II) center; however, diazepane-ligand-based complexes adopted square-pyramidal (SP) geometry (τ, 0.037). The Cu-N bonds (2.003-2.096 Å) are almost identical and shorter than Cu-N bonds (2.01-2.148 Å). Also, their Cu-O (Cu-O, 1.988 Å; Cu-O, 2.33 Å) bond distances are slightly varied. All of the complexes exhibited Cu → Cu redox couples in acetonitrile, where the redox potentials of TBP-based complexes (-0.251 to -0.383 V) are higher than those of SP-based complexes (-0.450 to -0.527 V). The d-d bands around 582-757 nm and axial patterns of electron paramagnetic resonance spectra [, 2.200-2.251; , (146-166) × 10 cm] of the complexes suggest the existence of five-coordination geometry. The bonding parameters showed > for all complexes, corresponding to out-of-plane π bonding. The complexes catalyzed direct hydroxylation of benzene using 30% HO and afforded phenol exclusively. The complexes with TBP geometry exhibited the highest amount of phenol formation (37%) with selectivity (98%) superior to that of diazepane-based complexes (29%), which preferred to adopt SP-based geometry. Hydroxylation of benzene likely proceeded via a Cu-OOH key intermediate, and its formation has been established by electrospray ionization mass spectrometry, vibrational, and electronic spectra. Their formation constants have been calculated as (2.54-11.85) × 10 s from the appearance of an O (π*) → Cu ligand-to-metal charge-transfer transition around 370-390 nm. The kinetic isotope effect (KIE) experiments showed values of 0.97-1.12 for all complexes, which further supports the crucial role of Cu-OOH in catalysis. The O-labeling studies using HO showed a 92% incorporation of O into phenol, which confirms HO as the key oxygen supplier. Overall, the coordination geometry of the complexes strongly influenced the catalytic efficiencies. The geometry of one of the Cu-OOH intermediates has been optimized by the density functional theory method, and its calculated electronic and vibrational spectra are almost similar to the experimentally observed values.
一系列受生物启发的铜(II)配合物具有 N-三齿和空间位阻的二氮杂环庚烷基配体,被研究为芳族 C-H 键功能化的催化剂。三齿配体基配合物在铜(II)中心周围表现出扭曲的三角双锥(TBP)几何形状(τ,0.70);然而,二氮杂环庚烷基配体基配合物采用正方形金字塔(SP)几何形状(τ,0.037)。Cu-N 键(2.003-2.096 Å)几乎相同且短于 Cu-N 键(2.01-2.148 Å)。此外,它们的 Cu-O(Cu-O,1.988 Å;Cu-O,2.33 Å)键距离略有变化。所有配合物在乙腈中均表现出 Cu → Cu 氧化还原对,其中 TBP 基配合物的氧化还原电位(-0.251 至-0.383 V)高于 SP 基配合物的氧化还原电位(-0.450 至-0.527 V)。配合物的 d-d 带约为 582-757 nm,电子顺磁共振光谱的轴向模式 [,2.200-2.251; ,(146-166)×10 cm]表明存在五配位几何形状。键合参数表明所有配合物的 > ,对应于面外 π 键合。配合物使用 30%HO 催化苯的直接羟化,仅得到苯酚。具有 TBP 几何形状的配合物形成苯酚的量最高(37%),选择性(98%)优于二氮杂环庚烷基配合物(29%),后者更倾向于采用 SP 基几何形状。苯的羟化可能通过 Cu-OOH 关键中间体进行,通过电喷雾电离质谱、振动和电子光谱证实了其形成。从 370-390 nm 左右出现的 O(π*)→Cu 配体到金属电荷转移跃迁,计算出它们的形成常数为(2.54-11.85)×10 s。动力学同位素效应(KIE)实验表明,所有配合物的值为 0.97-1.12,这进一步支持 Cu-OOH 在催化中的关键作用。使用 HO 的 O 标记研究表明,O 有 92%掺入苯酚中,这证实了 HO 是关键的氧供体。总的来说,配合物的配位几何形状强烈影响催化效率。通过密度泛函理论方法优化了一种 Cu-OOH 中间体的几何形状,其计算的电子和振动光谱与实验观察值几乎相似。