Suppr超能文献

利用无偶极子态的多路复用近场光镊

Multiplexed Near-Field Optical Trapping Exploiting Anapole States.

作者信息

Conteduca Donato, Brunetti Giuseppe, Barth Isabel, Quinn Steven D, Ciminelli Caterina, Krauss Thomas F

机构信息

School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom.

Optoelectronics Laboratory, Politecnico di Bari, 70125 Bari, Italy.

出版信息

ACS Nano. 2023 Sep 12;17(17):16695-16702. doi: 10.1021/acsnano.3c03100. Epub 2023 Aug 21.

Abstract

Optical tweezers have had a major impact on bioscience research by enabling the study of biological particles with high accuracy. The focus so far has been on trapping individual particles, ranging from the cellular to the molecular level. However, biology is intrinsically heterogeneous; therefore, access to variations within the same population and species is necessary for the rigorous understanding of a biological system. Optical tweezers have demonstrated the ability of trapping multiple targets in parallel; however, the multiplexing capability becomes a challenge when moving toward the nanoscale. Here, we experimentally demonstrate a resonant metasurface that is capable of trapping a high number of nanoparticles in parallel, thereby opening up the field to large-scale multiplexed optical trapping. The unit cell of the metasurface supports an anapole state that generates a strong field enhancement for low-power near-field trapping; importantly, the anapole state is also more angle-tolerant than comparable resonant modes, which allows its excitation with a focused light beam, necessary for generating the required power density and optical forces. We use the anapole state to demonstrate the trapping of 100's of 100 nm polystyrene beads over a 10 min period, as well as the multiplexed trapping of lipid vesicles with a moderate intensity of <250 μW/μm. This demonstration will enable studies relating to the heterogeneity of biological systems, such as viruses, extracellular vesicles, and other bioparticles at the nanoscale.

摘要

光镊通过实现对生物粒子的高精度研究,对生物科学研究产生了重大影响。迄今为止,研究重点一直是捕获从细胞水平到分子水平的单个粒子。然而,生物学本质上是异质的;因此,要严格理解生物系统,就需要研究同一群体和物种内的变异情况。光镊已证明能够并行捕获多个目标;然而,当向纳米尺度发展时,多路复用能力就成为了一项挑战。在此,我们通过实验展示了一种谐振超表面,它能够并行捕获大量纳米粒子,从而为大规模多路复用光学捕获开辟了领域。超表面的单元结构支持一种无偶极态,该态能在低功率近场捕获时产生强烈的场增强;重要的是,无偶极态比类似的谐振模式对角度的容忍度更高,这使得它可以用聚焦光束激发,而这对于产生所需的功率密度和光学力是必要的。我们利用无偶极态展示了在10分钟内捕获数百个100纳米的聚苯乙烯珠子,以及在强度<250 μW/μm的适中强度下对脂质囊泡进行多路复用捕获。这一展示将有助于开展与生物系统异质性相关的研究,例如纳米尺度下的病毒、细胞外囊泡和其他生物粒子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验