Patrikar Devashree R, Parate Mayur Rajaram
Indian Institute of Information Technology, Nagpur, India.
Int J Multimed Inf Retr. 2022;11(2):85-110. doi: 10.1007/s13735-022-00227-8. Epub 2022 Mar 29.
The current concept of smart cities influences urban planners and researchers to provide modern, secured and sustainable infrastructure and gives a decent quality of life to its residents. To fulfill this need, video surveillance cameras have been deployed to enhance the safety and well-being of the citizens. Despite technical developments in modern science, abnormal event detection in surveillance video systems is challenging and requires exhaustive human efforts. In this paper, we focus on evolution of anomaly detection followed by survey of various methodologies developed to detect anomalies in intelligent video surveillance. Further, we revisit the surveys on anomaly detection in the last decade. We then present a systematic categorization of methodologies for anomaly detection. As the notion of anomaly depends on context, we identify different objects-of-interest and publicly available datasets in anomaly detection. Since anomaly detection is a time-critical application of computer vision, we explore the anomaly detection using edge devices and approaches explicitly designed for them. The confluence of edge computing and anomaly detection for real-time and intelligent surveillance applications is also explored. Further, we discuss the challenges and opportunities involved in anomaly detection using the edge devices.
智能城市的当前概念影响着城市规划者和研究人员,促使他们提供现代化、安全且可持续的基础设施,并为居民提供良好的生活质量。为满足这一需求,已部署了视频监控摄像头以提高市民的安全与福祉。尽管现代科学有了技术发展,但监控视频系统中的异常事件检测仍具有挑战性,且需要大量人力。在本文中,我们聚焦于异常检测的发展历程,随后对为智能视频监控中的异常检测而开发的各种方法进行综述。此外,我们回顾了过去十年中有关异常检测的综述。然后,我们对异常检测方法进行系统分类。由于异常的概念取决于上下文,我们在异常检测中识别不同的感兴趣对象和公开可用的数据集。由于异常检测是计算机视觉的一个对时间要求很高的应用,我们探索使用边缘设备以及专门为其设计的方法进行异常检测。还探讨了边缘计算与异常检测在实时和智能监控应用中的融合。此外,我们讨论了使用边缘设备进行异常检测所涉及的挑战和机遇。