Suppr超能文献

癫痫发作的声音。

Sounds of seizures.

机构信息

Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA.

Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA.

出版信息

Seizure. 2020 May;78:86-90. doi: 10.1016/j.seizure.2020.03.008. Epub 2020 Mar 18.

Abstract

PURPOSE

A phase I feasibility study to determine the accuracy of identifying seizures based on audio recordings.

METHODS

We systematically generated 166 audio clips of 30 s duration from 83 patients admitted to an epilepsy monitoring unit between 1/2015 and 12/2016, with one clip during a seizure period and one clip during a non-seizure control period for each patient. Five epileptologists performed a blinded review of the audio clips and rated whether a seizure occurred or not, and indicated the confidence level (low or high) of their rating. The accuracy of individual and consensus ratings were calculated.

RESULTS

The overall performance of the consensus rating between the five epileptologists showed a positive predictive value (PPV) of 0.91 and a negative predictive value (NPV) of 0.66. The performance improved when confidence was high (PPV of 0.96, NPV of 0.70). The agreement between the epileptologists was moderate with a kappa of 0.584. Hyperkinetic (PPV 0.92, NPV 0.86) and tonic-clonic (PPV and NPV 1.00) seizures were most accurately identified. Seizures with automatisms only and non-motor seizures could not be accurately identified. Specific seizure-related sounds associated with accurate identification included disordered breathing (PPV and NPV 1.00), rhythmic sounds (PPV 0.93, NPV 0.80), and ictal vocalizations (PPV 1.00, NPV 0.97).

CONCLUSION

This phase I feasibility study shows that epileptologists are able to accurately identify certain seizure types from audio recordings when the seizures produce sounds. This provides guidance for the development of audio-based seizure detection devices and demonstrate which seizure types could potentially be detected.

摘要

目的

一项旨在确定基于音频记录识别癫痫发作准确性的 I 期可行性研究。

方法

我们系统性地从 2015 年 1 月至 2016 年 12 月期间在癫痫监测单元住院的 83 名患者中生成了 166 个时长 30 秒的音频片段,每个患者的每个片段都包含发作期和非发作期各一个。五名癫痫专家对音频片段进行了盲法评估,并对是否发生癫痫发作以及评估的置信水平(低或高)进行了评级。计算了个体和共识评级的准确性。

结果

五名癫痫专家的共识评级总体表现出阳性预测值(PPV)为 0.91,阴性预测值(NPV)为 0.66。当置信度较高时,表现有所提高(PPV 为 0.96,NPV 为 0.70)。癫痫专家之间的一致性为中度,kappa 值为 0.584。多动性(PPV 为 0.92,NPV 为 0.86)和强直-阵挛性(PPV 和 NPV 均为 1.00)发作的识别最为准确。仅有自动症和非运动性发作的癫痫不能准确识别。与准确识别相关的特定癫痫相关声音包括呼吸紊乱(PPV 和 NPV 均为 1.00)、节律性声音(PPV 为 0.93,NPV 为 0.80)和癫痫发作时的发声(PPV 为 1.00,NPV 为 0.97)。

结论

这项 I 期可行性研究表明,当癫痫发作产生声音时,癫痫专家能够从音频记录中准确识别某些癫痫发作类型。这为基于音频的癫痫发作检测设备的开发提供了指导,并展示了哪些类型的癫痫发作可能被检测到。

相似文献

1
Sounds of seizures.癫痫发作的声音。
Seizure. 2020 May;78:86-90. doi: 10.1016/j.seizure.2020.03.008. Epub 2020 Mar 18.
3
Clinical seizure lateralization in frontal lobe epilepsy.额叶癫痫的临床发作定位
Epilepsia. 2007 Mar;48(3):517-23. doi: 10.1111/j.1528-1167.2006.00943.x.
5
Ictal motor sequences: Lateralization and localization values.发作期运动序列:侧化和定位值
Epilepsia. 2016 Mar;57(3):369-75. doi: 10.1111/epi.13322. Epub 2016 Feb 11.
10
Seizure identification by clinical description in temporal lobe epilepsy: how accurate are we?
Neurology. 2003 Dec 23;61(12):1686-9. doi: 10.1212/01.wnl.0000090566.40544.04.

本文引用的文献

2
Non-electroencephalography-based seizure detection.非脑电的癫痫发作检测。
Curr Opin Neurol. 2019 Apr;32(2):198-204. doi: 10.1097/WCO.0000000000000658.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验