Arends Johan B, van Dorp Jasper, van Hoek Dennis, Kramer Niels, van Mierlo Petra, van der Vorst Derek, Tan Francis I Y
Kempenhaeghe/Heeze, The Netherlands; Technological University Eindhoven, Eindhoven, The Netherlands.
Sound Intelligence BV/Amersfoort (part of CLB), The Netherlands.
Epilepsy Behav. 2016 Sep;62:180-5. doi: 10.1016/j.yebeh.2016.06.008. Epub 2016 Aug 1.
We evaluated the performance of audio-based detection of major seizures (tonic-clonic and long generalized tonic) in adult patients with intellectual disability living in an institute for residential care.
First, we checked in a random sample (n=17, 102 major seizures) how many patients have recognizable sounds during these seizures. In the second part of this trial, we followed 10 patients (who had major seizures with recognizable sounds) during four weeks with an acoustic monitoring system developed by CLB ('CLB-monitor') and video camera. In week 1, we adapted the sound detection threshold until, per night, a maximum of 20 sounds was found. During weeks 2-4, we selected the epilepsy-related sounds and performed independent video verification and labeling ('snoring', 'laryngeal contraction') of the seizures. The video images were also fully screened for false negatives. In the third part, algorithms in the CLB-monitor detected one specific sound (sleep-related snoring) to illustrate the value of automatic sound recognition.
Part 1: recognizable sounds (louder than whispering) occurred in 23 (51%) of the 45 major seizures, 20 seizures (45%) were below this threshold, and 2 (4%) were without any sound. Part 2: in the follow-up group (n=10, 112 major seizures; mean: 11.2, range: 1-30), we found a mean sensitivity of 0.81 (range: 0.33-1.00) and a mean positive predictive value of 0.40 (range: 0.06-1.00). All false positive alarms (mean value: 1.29 per night) were due to minor seizures. We missed 4 seizures (3%) because of lack of sound and 10 (9%) because of sounds below the system threshold. Part 3: the machine-learning algorithms in the CLB-monitor resulted in an overall accuracy for 'snoring' of 98.3%.
Audio detection of major seizures is possible in half of the patients. Lower sound detection thresholds may increase the proportion of suitable candidates. Human selection of seizure-related sounds has a high sensitivity and moderate positive predictive value because of minor seizures which do not need intervention. Algorithms in the CLB-monitor detect seizure-related sounds and may be used alone or in multimodal systems.
我们评估了基于音频检测成年智力残疾患者(居住在寄宿护理机构)主要癫痫发作(强直阵挛发作和长时间全身性强直发作)的性能。
首先,我们在一个随机样本(n = 17,102次主要癫痫发作)中检查有多少患者在这些发作期间有可识别的声音。在该试验的第二部分,我们使用CLB开发的声学监测系统(“CLB监测仪”)和摄像机对10名患者(有可识别声音的主要癫痫发作患者)进行了为期四周的跟踪。在第1周,我们调整声音检测阈值,直到每晚最多发现20个声音。在第2 - 4周,我们选择与癫痫相关的声音,并对癫痫发作进行独立的视频验证和标注(“打鼾”、“喉部收缩”)。还对视频图像进行了全面筛查以查找假阴性。在第三部分,CLB监测仪中的算法检测到一种特定声音(与睡眠相关的打鼾)以说明自动声音识别的价值。
第1部分:45次主要癫痫发作中有23次(51%)出现可识别声音(比耳语声大),20次发作(45%)低于此阈值,2次(4%)没有任何声音。第2部分:在随访组(n = 10,112次主要癫痫发作;平均:11.2,范围:1 - 30)中,我们发现平均灵敏度为0.81(范围:0.33 - 1.00),平均阳性预测值为0.40(范围:0.06 - 1.00)。所有误报警报(平均值:每晚1.29次)均由轻微癫痫发作引起。由于没有声音,我们漏报了4次癫痫发作(3%),由于声音低于系统阈值漏报了10次(9%)。第3部分:CLB监测仪中的机器学习算法对“打鼾”的总体准确率为98.3%。
一半的患者可以通过音频检测主要癫痫发作。降低声音检测阈值可能会增加合适候选者的比例。由于轻微癫痫发作无需干预,人工选择与癫痫发作相关的声音具有高灵敏度和中等阳性预测值。CLB监测仪中的算法可检测与癫痫发作相关的声音,可单独使用或用于多模态系统。