Suppr超能文献

一种用于微生物组样本的基于广义线性模型的潜在变量排序方法。

A GLM-based latent variable ordination method for microbiome samples.

作者信息

B Sohn Michael, Li Hongzhe

机构信息

Department of Biostatistics and Epidemiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, U.S.A.

出版信息

Biometrics. 2018 Jun;74(2):448-457. doi: 10.1111/biom.12775. Epub 2017 Oct 9.

Abstract

Distance-based ordination methods, such as principal coordinates analysis (PCoA), are widely used in the analysis of microbiome data. However, these methods are prone to pose a potential risk of misinterpretation about the compositional difference in samples across different populations if there is a difference in dispersion effects. Accounting for high sparsity and overdispersion of microbiome data, we propose a GLM-based Ordination Method for Microbiome Samples (GOMMS) in this article. This method uses a zero-inflated quasi-Poisson (ZIQP) latent factor model. An EM algorithm based on the quasi-likelihood is developed to estimate parameters. It performs comparatively to the distance-based approach when dispersion effects are negligible and consistently better when dispersion effects are strong, where the distance-based approach sometimes yields undesirable results. The estimated latent factors from GOMMS can be used to associate the microbiome community with covariates or outcomes using the standard multivariate tests, which can be investigated in future confirmatory experiments. We illustrate the method in simulations and an analysis of microbiome samples from nasopharynx and oropharynx.

摘要

基于距离的排序方法,如主坐标分析(PCoA),在微生物组数据分析中被广泛使用。然而,如果存在离散效应差异,这些方法在解释不同人群样本的组成差异时容易产生潜在的误解风险。考虑到微生物组数据的高稀疏性和过度离散性,我们在本文中提出了一种基于广义线性模型的微生物组样本排序方法(GOMMS)。该方法使用零膨胀拟泊松(ZIQP)潜在因子模型。开发了一种基于拟似然的期望最大化(EM)算法来估计参数。当离散效应可忽略不计时,它与基于距离的方法表现相当,而当离散效应较强时,它始终表现更好,此时基于距离的方法有时会产生不理想的结果。从GOMMS估计的潜在因子可用于使用标准多变量检验将微生物组群落与协变量或结果相关联,这可在未来的验证性实验中进行研究。我们在模拟以及对来自鼻咽和口咽的微生物组样本的分析中说明了该方法。

相似文献

引用本文的文献

5
Combining -values from various statistical methods for microbiome data.整合来自多种统计方法的微生物组数据值。
Front Microbiol. 2022 Nov 10;13:990870. doi: 10.3389/fmicb.2022.990870. eCollection 2022.
9
Machine learning and applications in microbiology.机器学习及其在微生物学中的应用。
FEMS Microbiol Rev. 2021 Sep 8;45(5). doi: 10.1093/femsre/fuab015.
10
Model-based joint visualization of multiple compositional omics datasets.基于模型的多个组成型组学数据集的联合可视化
NAR Genom Bioinform. 2020 Jul 21;2(3):lqaa050. doi: 10.1093/nargab/lqaa050. eCollection 2020 Sep.

本文引用的文献

3
Waste not, want not: why rarefying microbiome data is inadmissible.不浪费,不匮乏:为何微生物组数据稀疏化不可取。
PLoS Comput Biol. 2014 Apr 3;10(4):e1003531. doi: 10.1371/journal.pcbi.1003531. eCollection 2014 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验