Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
J Mol Biol. 2020 May 1;432(10):3149-3158. doi: 10.1016/j.jmb.2020.03.032. Epub 2020 Apr 8.
Ligand-independent activation of receptor tyrosine kinases (RTKs) allows for dissecting out the receptor-specific signaling outcomes from the pleiotropic effects of the ligands. In this regard, RTK intracellular domains (ICD) are of interest due to their ability to recapitulate signaling activity in a ligand-independent manner when fused to chemical or optical dimerizing domains. A common strategy for synthetic activation of RTKs involves membrane tethering of dimerizer-RTK ICD fusions. Depending on the intrinsic signaling capacity, however, this approach could entail undesirable baseline signaling activity in the absence of stimulus, thereby diminishing the system's sensitivity. Here, we observed toxicity in early Xenopus laevis embryos when using such a conventional optogenetic design for the fibroblast growth factor receptor (FGFR). To surpass this challenge, we developed a cytoplasm-to-membrane translocation approach, where FGFR ICD is recruited from the cytoplasm to the plasma membrane by light, followed by its subsequent activation via homo-association. This strategy results in the optical activation of FGFR with low background activity and high sensitivity, which allows for the light-mediated formation of ectopic tail-like structures in developing X. laevis embryos. We further generalized this strategy by developing optogenetic platforms to control three neurotrophic tropomyosin receptor kinases, TrkA, TrkB, and TrkC. We envision that these ligand-independent optogenetic RTKs will provide useful toolsets for the delineation of signaling sub-circuits in developing vertebrate embryos.
配体非依赖性激活受体酪氨酸激酶 (RTKs) 可将受体特异性信号转导结果与配体的多效性效应分离开来。在这方面,由于其能够在与化学或光学二聚化结构域融合时以配体非依赖性的方式重现信号活性,因此 RTK 细胞内结构域 (ICD) 引起了人们的兴趣。合成激活 RTKs 的一种常见策略涉及将二聚化 RTK ICD 融合物固定在膜上。然而,根据固有信号转导能力,这种方法可能会在没有刺激的情况下产生不期望的基线信号活性,从而降低系统的敏感性。在这里,当我们使用这种传统的光遗传学设计用于成纤维细胞生长因子受体 (FGFR) 时,我们观察到早期非洲爪蟾胚胎的毒性。为了克服这一挑战,我们开发了一种从细胞质到质膜的易位方法,其中 FGFR ICD 通过光从细胞质募集到质膜,然后通过同源结合进行随后的激活。这种策略导致 FGFR 的光学激活具有低背景活性和高灵敏度,这允许在发育中的非洲爪蟾胚胎中通过光介导形成异位尾部样结构。我们通过开发光遗传学平台进一步推广了这种策略,以控制三种神经营养性原肌球蛋白受体激酶,TrkA、TrkB 和 TrkC。我们设想这些配体非依赖性光遗传学 RTKs 将为描绘发育中脊椎动物胚胎中的信号转导子电路提供有用的工具集。