Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129.
Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10465-E10474. doi: 10.1073/pnas.1705414114. Epub 2017 Nov 14.
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain.
皮质下结构在大脑功能中起着至关重要的作用。然而,评估这些结构中电生理活动的选择有限。使用脑磁图(MEG)和脑电图(EEG)可以非侵入性地记录皮质下结构中神经元活动产生的电磁场。然而,这些皮质下信号比皮质活动产生的信号弱得多。此外,我们在这里表明,由于分布的皮质活动可以解释深部来源产生的 MEG 和 EEG 模式,因此很难解析皮质下来源。然后,我们证明如果皮质活动具有空间稀疏性,则可以使用 M/EEG 解析皮质和皮质下源。在此基础上,我们为 M/EEG 开发了分层稀疏逆解。我们在现实模拟和听觉诱发电位数据上评估了该算法的性能,并表明在存在皮质活动的情况下可以正确估计丘脑和脑干源。我们的工作为在人类大脑中描述皮质下结构中的电生理活动提供了替代视角和工具。